

Cisco StadiumVision Mobile SDK
Programmer’s Guide for
Apple iOS, Google Android, and
Windows Phone
Release 2.1
June 12, 2015
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Google, Google Play, Android and certain other marks are trademarks of Google Inc.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Cisco StadiumVision Mobile SDK Programmer’s Guide
© 2015 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

C O N T E N T S
Preface ix

About This Guide ix

Document Revision History ix

About Cisco StadiumVision Mobile x

Who Should Use This Guide x

Obtaining the SDK x

Obtaining Documentation and Submitting a Service Request x

Cisco StadiumVision Mobile Introduction 1-1

Cisco StadiumVision Mobile Solution Overview 1-1

Key Terms and Concepts 1-2

Cisco Stadium Vision Mobile Media Input Types 1-3

Streaming Video Channels 1-3

Streaming Audio Channels 1-4

Data Channels 1-4

File Channels 1-5

File Channel Distribution 1-5

Generic Ingest 1-6

EVS C-Cast Integration 1-6

Content Access Control–Triplet Key 1-7

Testing Your Cisco StadiumVision Mobile App 1-8

Cisco StadiumVision Mobile SDK Best Practices 1-9

Apple iOS 1-9

Google Android 1-9

Apple iOS, Google Android, and Windows Phone 1-10

Cisco StadiumVision Mobile API for Apple iOS 2-1

Introduction to Cisco StadiumVision Mobile SDK for iOS 2-1

Cisco StadiumVision Mobile and iOS Developer Tools 2-2

Download and Unpack the SDK 2-3

Getting Started with the iOS Sample App 2-3

Compile the Sample App 2-4

Customize the Sample App 2-5
iii
Cisco StadiumVision Mobile SDK Programmer’s Guide

Contents
Cisco Sample app Customized Video Player 2-5

Embed the Cisco StadiumVision Mobile SDK in an Existing App 2-6

Integration Checklist 2-6

Configuration Files 2-9

Field of Use Configuration 2-10

Wi-Fi Access Point Configuration 2-10

How Cisco StadiumVision Mobile Fits into the iOS Framework 2-10

Client Application Integration Overview 2-10

iOS Model View Controller (MVC) Design Pattern 2-11

Cisco StadiumVision Mobile iOS API Class Overview 2-11

Video View Controller Inheritance 2-12

Cisco StadiumVision Mobile Application Classes 2-12

Customer Application Roles 2-13

Cisco StadiumVision Mobile Methods and Functions for iOS 2-14

Cisco StadiumVision Mobile iOS API Summary 2-14

Return Status Object 2-16

Video Player Activity API Summary 2-18

NS Notification Events 2-18

Video Player State Flags 2-20

Video Player Background Audio 2-21

Video Player Channel Inactive Callback 2-21

Receiving Service Up and Down Notifications 2-21

In-Venue Detection 2-23

Set the SDK Configuration at Run-Time 2-24

Scalable File Distribution 2-25

Data Channels 2-25

Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples 2-26

Starting the SDK 2-27

Setting the Log Level 2-27

Getting the SDK Version String 2-27

Displaying the Device UUID 2-27

Shutting Down the SDK (Optional) 2-28

Video Player View Controller Customization 2-28

Default Cisco Video Player View Controller 2-28

Customized Video Player 2-29

Video Channels 2-29

Presenting the Video Channel List 2-29

Playing a Video Channel 2-30

Getting the Video Channel List 2-30
iv
Cisco StadiumVision Mobile SDK Programmer’s Guide

Contents
Seeking Within the Video Buffer 2-30

Data Channels 2-31

Getting the Data Channel List 2-31

Observing a Data Channel 2-31

EVS C-Cast Integration 2-32

Cisco StadiumVision Mobile API for Google Android 3-1

Introduction to Cisco StadiumVision Mobile SDK for Android 3-2

Cisco StadiumVision Mobile and Android Developer Tools 3-2

Download and Unpack the SDK 3-4

Getting Started with the Android Demo App 3-5

Compile the Demo App 3-5

Customize the Demo App 3-6

Embed the Cisco StadiumVision Mobile SDK in an Existing App 3-7

Integration Checklist 3-7

Android Permissions 3-7

SDK Native Libraries 3-7

Configuration Files 3-11

Wi-Fi AP Info Configuration (Optional) 3-11

How Cisco StadiumVision Mobile Fits into the Android Framework 3-12

Android API Class Overview 3-12

Android OS Activity Overview 3-12

Client Application Integration Overview 3-14

Customer Application Roles 3-14

Cisco StadiumVision Mobile Methods and Functions for Android 3-15

Cisco StadiumVision Mobile Android API Summary 3-15

Return Status Object 3-19

Video Player Activity API Summary 3-20

Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples 3-21

Start the SDK 3-21

Notify Life-Cycle Activity 3-21

Indicate StadiumVision Mobile Service: Up or Down 3-22

Detect Mobile Device Connection 3-24

Set the SDK Configuration at Run-Time 3-25

Scalable File Distribution 3-25

Data Channels 3-26

Get the SDK Configuration 3-26

Set SDK Configuration using setConfigWithString API Method 3-27

Get the Available Streamer Servers 3-28
v
Cisco StadiumVision Mobile SDK Programmer’s Guide

Contents
Obtain Additional Statistics 3-28

Receive Video Player State Notifications 3-29

Detect Video Player "Channel Inactive" Callback 3-30

Customizing the Default Video Player 3-31

Cisco Demo Video Player 3-31

Video Channels 3-32

Getting the Video Channel List 3-32

Presenting the Video Channel List 3-32

Playing a Video Channel 3-33

Seeking Within the Video Buffer 3-33

Setting the Video Dimensions 3-33

Data Channels 3-34

Getting the Data Channel List 3-34

Observing a Data Channel 3-35

Audio Channels 3-35

Getting the Audio Channel List 3-35

EVS C-Cast Integration 3-36

Cisco StadiumVision Mobile API for Windows Phone 4-1

Introduction to Cisco StadiumVision Mobile SDK for
Windows Phone 4-2

Cisco StadiumVision Mobile and Windows Developer Tools 4-2

Download and Unpack the SDK 4-3

Getting Started with the Windows Demo App 4-4

Compile the Demo App 4-4

Customize the Demo App 4-4

Embed the Cisco StadiumVision Mobile SDK in an Existing App 4-5

Integration Checklist 4-5

Wi-Fi AP Info Configuration (Optional) 4-8

How Cisco StadiumVision Mobile Fits into a Windows Phone App 4-8

Cisco StadiumVision Mobile Class Overview 4-8

Customer Application Roles 4-10

Cisco StadiumVision Mobile Methods and Functions for Windows 4-11

Cisco StadiumVision Mobile Windows API Summary 4-11

Return Status Object 4-14

Video Player Window API Summary 4-16

Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples 4-16

Starting the SDK 4-17

Cisco StadiumVision Mobile Service Up or Down Indicator 4-17

In-Venue Detection 4-18
vi
Cisco StadiumVision Mobile SDK Programmer’s Guide

Contents
Set the SDK Configuration at Run-Time 4-19

Get the SDK Configuration 4-20

setConfigWithString API Method 4-21

Get the Available Streamer Servers 4-21

Additional Statistics 4-22

Video Player State Notifications 4-22

Video Player "Channel Inactive" Event 4-23

Customizing the Default Video Player 4-24

Cisco Demo Video Player 4-25

Video Channels 4-25

Getting the Video Channel List 4-25

Presenting the Video Channel List 4-26

Playing a Video Channel 4-26

Seeking Within the Video Buffer 4-26

Setting the Video Dimensions 4-26

Data Channels 4-26

Getting the Data Channel List 4-27

Observing a Data Channel 4-27

EVS C-Cast Integration 4-28
vii
Cisco StadiumVision Mobile SDK Programmer’s Guide

Contents
viii
Cisco StadiumVision Mobile SDK Programmer’s Guide

Preface

First Published: May 26, 2015

Revised: June 12, 2015

About This Guide
This guide describes the Cisco StadiumVision Mobile SDK for third-party developers whose
applications will operate with the Cisco StadiumVision Mobile solution and supplements the API
documentation Doxygen build included with the SDK.

Our implementations of Cisco StadiumVision Mobile SDK, and included sample application may
change over time in response to the changing needs of our partner community. We will maintain
backward compatibility whenever possible but advise you to expect differences in future releases. A list
of changes will be provided for each release to keep API users aware of any necessary code changes that
they will need to make.

Document Revision History

Table 1 Document Revision History

Date Change Summary

June 12, 2015 • Included a new best practice under Delivering Channel Content for Apple
iOS, Google Android, and Windows Phone in the “Cisco StadiumVision
Mobile SDK Best Practices” section on page 9.

• Added a note in the “Cisco StadiumVision Mobile API for Apple iOS”
indicating that Release 2.1 does not include two files ("libvoCTS.a" and
"voVidDec.dat") that were previously included.

• Added “EVS C-Cast Integration” section on page 28 for Windows Phone.

• Changed the title of the guide to: Cisco StadiumVision Mobile SDK
Programmer’s Guide, Release 2.1.

June 5, 2015 Revised the “EVS C-Cast Integration” section on page 6.

May 26, 2015 Initial version of Cisco StadiumVision Mobile SDK Guide, Release 2.1.
ix
Cisco StadiumVision Mobile SDK Programmer’s Guide

Preface
About Cisco StadiumVision Mobile
Cisco StadiumVision Mobile (SVM) enables reliable and scalable delivery of low-delay video and data
streams to Wi-Fi devices at venues. A Venue Operator typically configures and operates SVM,
Connected Stadium Wi-Fi and Connected Stadium components. The mobile app developer is responsible
for obtaining the SVM SDK from Cisco, working with the Venue Operator on configuration
dependencies, and integrating the SVM Client.

Who Should Use This Guide
This guide is a technical resource for application developers who build custom user applications that
extend Cisco StadiumVision Mobile. You should have an advanced level of understanding of web
technology, operation, and terminology and be familiar with Cisco StadiumVision Mobile.

Obtaining the SDK
Please contact your Cisco account team to become part of the Cisco StadiumVision Mobile SDK partner
program.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What's New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS)
feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds
are a free service and Cisco currently supports RSS Version 2.0.
x
Cisco StadiumVision Mobile SDK Programmer’s Guide

Cis
C H A P T E R 1

Cisco StadiumVision Mobile Introduction

First Published: May 26, 2015

Revised: June 12, 2015

This chapter provides an overview of the Cisco StadiumVision Mobile solution and contains the
following sections:

• Cisco StadiumVision Mobile Solution Overview, page 1-1

• Key Terms and Concepts, page 1-2

• Cisco Stadium Vision Mobile Media Input Types, page 1-3

– Streaming Video Channels, page 1-3

– Streaming Audio Channels, page 1-4

– Data Channels, page 1-4

– File Channels, page 1-5

• Content Access Control–Triplet Key, page 1-7

• Testing Your Cisco StadiumVision Mobile App, page 1-8

• Cisco StadiumVision Mobile SDK Best Practices, page 1-9

Cisco StadiumVision Mobile Solution Overview
The Cisco StadiumVision Mobile (SVM) solution enables the reliable delivery of low-delay video and
data streams to fans’ Wi-Fi devices at venues. Figure 1-1 illustrates a high-level view of the Cisco
StadiumVision Mobile solution, which has the following attributes:

• Consists of Video Encoder, Streamer and Reporter products

• Requires integration of Cisco Client SDK in the mobile application

• Builds upon Cisco Connected Stadium and Cisco Connected Stadium Wi-Fi solutions
1-1
co StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Key Terms and Concepts
Figure 1-1 Cisco StadiumVision Mobile Architecture

Key Terms and Concepts
The following are key terms and concepts as they apply to the Cisco StadiumVision Mobile solution.

Cisco Demo or Sample App: A standalone mobile application available to a Stadium Operator for
testing and evaluating the Cisco StadiumVision Mobile solution.

Repair: In the context of Cisco StadiumVision Mobile, an application-layer mechanism that allows
Cisco StadiumVision Mobile Clients to recover lost packets.

Stadium Operator: The entity hosting and configuring the Cisco StadiumVision Mobile solution.

SVM: Cisco StadiumVision Mobile

SVM Reporter: A standalone application used to collect Cisco StadiumVision Mobile Client statistics.

SVM Session: The protocol and associated parameters which define the sender and receiver
configuration for the streaming of content.

SVM Session Announcement/Discovery: Methods used by the Cisco StadiumVision Mobile Streamer
and SVM Client to allow a mobile device to obtain the list of available sessions and associated session
metadata.

SVM Session Triplet Key: A specific combination of Venue, Content Owner, and App Developer used
by the SVM Streamer and SVM Client to limit session discovery and content consumption to authorized
applications. For additional information, see “Content Access Control–Triplet Key” section on page 1-7.
The triplet key components are defined as follows:

• Venue: A text string associated with the venue where an Cisco StadiumVision Mobile Streamer is
hosted.

• Content Owner: A text string associated with an entity that wishes to distribute content over the
SVM solution.

• App Developer: The text string associated with the Application Developer authorized by a Content
Owner to consume the Content Owner’s content over the SVM solution.
1-2
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
SVM Streamer: A standalone application used to aggregate and send content to mobile applications
with an embedded Cisco StadiumVision Mobile Client.

SVM System: An end-to-end solution for the delivery of digital media content streams consisting of
specific products (Video Encoder, Cisco StadiumVision Mobile Streamer, Cisco StadiumVision Mobile
Reporter), wireline and wireless infrastructure (Connected Stadium, Connected Stadium Wi-Fi) and
mobile apps with an embedded Cisco StadiumVision Mobile Client.

Cisco Stadium Vision Mobile Media Input Types
The Cisco StadiumVision Mobile solution can accept multiple forms of media content input (in-house
video feed, IP video feed, and IP data feeds). The media is then routed through the appropriate encoder
and into the Streamer. The Cisco StadiumVision Mobile Streamer is a critical component in the Cisco
StadiumVision Mobile solution that aggregates video, audio, data, and file content streams and supports
the following content types:

Streaming Video Channels
Figure 1-2 shows the video channel (SDI or IP) inputs in the Cisco StadiumVision Mobile solution.
Streaming video can be real-time in-venue game feed, live out of the venue game taking place at the same
venue, or loop the most recent replays from the live in-venue game.

Table 1-1 Channel Types Supported and Use Cases

Channel Type
Maximum Number of
Channels Example Use Cases

Streaming Video 4 • Delivers live real-time venue game feed.

• Loops the most recent replays from the live in-venue
game.

• Provide live out-of-venue game feed taking place at the
same time.

Streaming Audio
(Available in Android SDK only)

10 • Provides the choice of commentary in multiple
languages.

• Offers the choice to select between the home team and
the away team commentators.

Data 4 • Distributes data through push and pull channels to the
client app.

Note The total number of data channels is 4.

• Data Push • Triggers all mobile devices to display the same content
at the same time, typically used for a sponsored moment
of exclusivity.

• Data Pull • Delivers real-time game statistics overlaid on the video
pane.

File 1 • Provides video replays, delivered by EVS C-Cast.
1-3
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
Figure 1-2 Cisco StadiumVision Mobile Streaming Video

Streaming Audio Channels
Figure 1-3 shows how Cisco StadiumVision Mobile allows audio channels to compliment the live game
experience. Audio channels consume less bandwidth than video channels, which allows for more room
for channels.

Figure 1-3 Cisco StadiumVision Mobile Streaming Audio

Note Streaming audio is only supported in the Android SDK.

Data Channels
Figure 1-4 shows how Cisco StadiumVision Mobile allows for the data push and pull channels to
distribute data of any kind to the client app. The system integrator can decide what types of data is
distributed and how it is used by the application. There are two types of data channels:

• Pull: Streamer polls an external web server at regular intervals (default 10 seconds). This channel
can be used for data that changes periodically such statistics or thumbnails.

• Push: An external computer pushes data to the Cisco StadiumVision Streamer. This channel can be
used for sending on-demand triggers to all mobile devices, for example when a goal is scored.
1-4
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
Figure 1-4 Cisco StadiumVision Mobile Data Channels

File Channels
Figure 1-5 shows how Cisco StadiumVision Mobile enables file channels as a way to distribute
file-based (video, audio, and data) content to a large number of mobile clients over multicast.

Figure 1-5 Cisco StadiumVision Mobile Files Channels

File Channel Distribution

File channels are often used for replays to mobile devices at a live event where the bottleneck in a
stadium is the Wi-Fi network that serves tens of thousands of fans with mobile devices. In order to scale,
you can use Cisco StadiumVision Mobile Scalable File Distribution (SFD).

SFD uses multicast over Wi-Fi to scale distribution of the C-Cast video files. Multicast works much like
over-the-air broadcast TV where your local TV station sends out a single signal that anyone in the area
can receive with an antenna on the roof. From a load perspective it makes no difference to the TV
broadcaster if ten subscribers or ten thousand subscribers are watching. Cisco StadiumVision Mobile
SFD works in a similar way by sending the files as a single multicast transmission, and any number of
mobile devices in the stadium can listen to that signal, receive the file and cache it in local storage for
later use.
1-5
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
Generic Ingest

Note Generic ingest is not supported in Cisco StadiumVision Release 2.1.

EVS C-Cast Integration

EVS C-Cast is the platform that Cisco StadiumVision Mobile uses for making replay video clips
available to mobile clients over high density Wi-Fi networks. Read more about EVS C-Cast at:

http://www.evs.com/nala/product/c-cast

Note Cisco StadiumVision Mobile is supported with EVS C-Cast version 2.x only. EVS C-Cast version 3.x is
not supported.

The traditional way of scaling C-Cast content delivery to a large number of clients is by using a Content
Delivery Network (CDN). The CDN caches the content closer to the client, and thus avoids the need for
every client to reach back and retrieve the content from the C-Cast Central server. This offloads the
C-Cast Central server and reduces the amount of duplicate content that has to traverse the network.

However, the CDN approach does not help in a Wi-Fi environment where the bottleneck is the last 25
meters from an access point to a mobile device. SVM solves this problem by multicasting the C-Cast
replays to mobile devices, and therefore avoids sending replays individually to each and every device.

Overview

In a traditional unicast C-Cast deployment (without SVM integration) the client app fetches an XML or
JSON formatted C-Cast timeline via HTTP. The timeline describes the sequence of replays (C-Cast calls
them events), and the camera angles available for each. Each camera angle consists of a thumbnail
graphic and a MP4 video file.

From the perspective of the C-Cast mobile app there is very little difference between the traditional
unicast and the Cisco StadiumVision Mobile multicast scenarios. In both cases, the exact same C-Cast
timeline provides the app with the info it needs to make replays available to the user. And in both cases,
the standard C-Cast media files are used. The only difference between the two scenarios is the transport
mechanism used to the deliver the timeline and media files to the mobile devices. And this difference is
largely, but not completely, hidden by the Cisco StadiumVision Mobile SDK. The C-Cast timeline is
delivered via an SVM data channel and the corresponding media files are delivered via an SVM file
channel.

Operation

When an SVM enabled C-Cast app is launched, it starts listening for the timeline on the SVM data
channel. By default the timeline is repeated every 10 seconds, so the app may have to wait for up to 10
seconds to receive the latest timeline.

With the timeline in hand, the app extracts the media filenames for each replay and camera angle. The
app then queries the SVM SDK to see if the file of interest has been received on the file channel and
cached in local storage on the mobile device. If the file is available, the app proceeds to use it.
1-6
Cisco StadiumVision Mobile SDK Programmer’s Guide

http://www.evs.com/nala/product/c-cast

Chapter 1 Cisco StadiumVision Mobile Introduction
 Content Access Control–Triplet Key
If a large number of replays and/or camera angles are being distributed, it can take several minutes for
all media files to be received by the mobile device. It is therefore entirely possible that the app queries
the SVM SDK for a specific file only to find that the file is not yet available. In order to provide a
responsive user experience, the app should handle this situation by retrieving the missing file directly
from C-Cast via unicast HTTP. The URL for this operation can be constructed from the timeline
metadata. Consult the C-Cast API guide for instruction on how to create this URL.

This approach for managing files that are not yet available is referred to as hybrid unicast/multicast. By
combining the two we are able to provide a solution that offers scalability and responsiveness.

To obtain the EVS C-Cast API, contact James Stellphlug (j.stellpflug@evs.com) stating that you are
developing an app to consume C-Cast clips in a Cisco StadiumVision Mobile venue.

Content Access Control–Triplet Key
An important feature of the Cisco StadiumVision Mobile solution is to limit the consumption of Cisco
StadiumVision Mobile encoded content to authorized mobile applications. Consider the following
situation:

Content Owner A (e.g., sports team) wishes to use the Cisco StadiumVision Mobile solution to deliver
live camera feeds to fans throughout a venue during the team’s home games. Content Owner B (e.g.,
entertainment company) plans to host events at the same venue at a different time and also wishes to
deliver live feeds to their fans. The two Content Owners each want to limit content consumption to their
chosen and therefore authorized, Application Developer. The reasons for needing to limit content
consumption to authorized mobile apps are many. For example, the app might need to be purchased or
it may be sponsored by an advertiser. As a result, Cisco StadiumVision Mobile video and data streams
configured for Content Owner A’s mobile app must not be consumed by Content Owner B’s mobile app
and vice-versa.

The Cisco StadiumVision Mobile Streamer includes a Triplet (Venue/Content Owner/App Developer) in
each announced session. Only mobile apps with the identical Triplet will be able to discover Cisco
StadiumVision Mobile sessions and consume the associated content. The Streamer may be configured
to support multiple Content Owner and App Developer combinations, though only a single Triplet may
be active at any one time.

The Venue, Content Owner, Application Developer (triplet key) settings are critical to enabling content
consumption on mobile devices. The Streamer settings must match those used by the App Developer for
content to be discovered and consumed by a mobile app. App Developers must be notified of a change
in Venue name so that their app may be updated. Conversely, if the App Developer has already deployed
the app, App Developers must also be notified if the associated Content Owner/App Developer setting
on the Streamer is modified.

Note The Stadium Operator is responsible for correctly configuring the Streamer and working with Content
Owner/App Developer to enable content consumption. The Content Owner/App Developer paring must
match the values hard coded into the specific SDK for the App Developer contracted for a particular
venue.

Additional information regarding the triplet key is available in the Cisco StadiumVision Mobile Streamer
Administration Guide available on Cisco.com at:

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-maintenance-guides-list.html
1-7
Cisco StadiumVision Mobile SDK Programmer’s Guide

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-maintenance-guides-list.html#anchor10

Chapter 1 Cisco StadiumVision Mobile Introduction
 Testing Your Cisco StadiumVision Mobile App
Testing Your Cisco StadiumVision Mobile App
The Cisco StadiumVision Mobile SDK includes the ability for developers to test their application
without being connected to a Cisco Connected Wi-Fi Network. This capability is provided with a set of
files that can emulate the data received over the network. The clean.stream file that comes bundled with
the SDK contains just one video channel.

To provide app developers with additional ways to test multiple channels, an additional set of
clean.stream files is available for use on Apple iOS and Google Android. This package includes a
number of Cisco StadiumVision Mobile stream files for local playback on a mobile device. The stream
files enable an SVM app developer to perform some basic testing when access to the Cisco
StadiumVision Mobile backend infrastructure is not available.

You can download the set of files at the same location where you obtained the Cisco StadiumVision
Mobile SDK tar.bz2 file or contact your Cisco account team for details as to how to become part of the
Cisco StadiumVision Mobile SDK partner program by sending an email to:

svm-sdk@external.cisco.com.

We recommend that you get started using these stream files with the included Cisco StadiumVision
Mobile demo app before attempting to use it with the app you are developing. For details consult the
read-me files included in the root folder of the SDK package.

All stream files are encoded with the default triplet below. The app listening to these stream files must
use this exact triplet in order to receive the streams.

"license": { "venueName": "VenueName", "contentOwner": "ContentOwner", "appDeveloper":
"AppDeveloper" }

The following stream files are included:

• video.stream: This stream file contains 4 video channels, as opposed to the one video channel in
the stream file that comes bundled with the SDK. The stream file starts off with one channel. Every
10 seconds another channel appears, until all 4 channels are present. The channels then start
dropping off one by one, until there are none left.

Note The video on channel 1 freezes when the channel disappears from the channel lineup. In
order to keep the file size reasonable, only one of the channels includes media.

• audio.stream: This stream file contains one audio channel.

Note Only the Android SDK supports audio channels.

• ccast.stream: This stream file contains the required streams to test basic EVS C-Cast functionality.
The stream file contains these 3 channels:

– CcastTimeLineXML: Data channel carrying the C-cast timeline in XML format.

– CcastTimeLineJSON: Data channel carrying the C-cast timeline in JSON format.

– CcastTimeMedia: File channel carrying the C-Cast mp4 video and jpg thumbnail files.

Note The iOS Sample app 2.1 does not support file channels. The iOS SDK does however have full
support file channels.

Please direct your questions to: svm-sdk@external.cisco.com.
1-8
Cisco StadiumVision Mobile SDK Programmer’s Guide

mailto:svm-sdk@external.cisco.com

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
Cisco StadiumVision Mobile SDK Best Practices

Apple iOS
Consider the following best practices when developing and delivering an app for Apple iOS:

Correlating Reporter Data to a Specific Device

• Apple does not permit applications to access any device information that can be used to identify that
device or its owner. As a result, the iOS SDK is unable to include the MAC address in the periodic
stats that it sends to the Cisco StadiumVision Mobile Reporter. As a substitute for the MAC address,
the SDK instead includes a SVM Device UUID (universally unique identifier) that is unique for
every device. This UUID allows Reporter data to be correlated with a specific device. In order for
the correlation to work, the mobile app must display the UUID somewhere in its menu system (for
example on the About or Help tabs).

The app can retrieve the UUID from the SDK via the code sample below. The getDeviceUUID
method is documented in the iOS SVM header file.

StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
NSString *deviceUUID = [svm getDeviceUUID];
NSLog(@"Device UUID is %@", deviceUUID);

Note The Cisco StadiumVision Mobile Device UUID should not be confused with the Unique Device
Identifier (UDID) that is displayed in iTunes.

Google Android
Consider the following best practices when developing and delivering an app for Google Android:

Delivering Channel Content

• Internet Group Management Protocol (IGMP) is a prerequisite for Cisco StadiumVision Mobile
multicast to function correctly. Most, but not all, Android devices support IGMP. A user will see an
empty channel list in the SVM app if they are using a device that does not support IGMP unless
another active SVM client is associated to the same Access Point (AP). As a result, the user would
experience sporadic channel support without knowing why. We recommend that all SVM-enabled
Android apps perform the IGMP capability check as detailed in the example below. If the IGMP
capability check returns false, then the app should warn the user when the user attempts to access
any part of the app that relies on the SVM SDK.

 boolean isCapable = false;
 File f = new File("/proc/net/igmp");
 if(f.exists()) {
 isCapable = true;
 }
1-9
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
Apple iOS, Google Android, and Windows Phone
Consider the following best practices when developing and delivering an app for Apple iOS, Google
Android, and Windows Phone:

Delivering Channel Content

• Start the SDK immediately when the app is launched or when the app detects that it is in venue.
Do not wait until the user navigates to the SVM features in the UI. This ensures the best possible
user experience so that content is then available to present to the user immediately. This is
particularly important when using data and file channels because it can take several minutes for a
content rotation to complete.

• When a user selects a channel on their mobile device, there could be a 5-10 second delay before the
app starts receiving multicast video if the client has to wait for the IGMP/PIM to set up the multicast
tree. The same delay could occur when a device resumes from background or sleep mode. Instead
of displaying a black screen, communicate to the user that their request is being processed by
showing a transition graphic (for example a spinning wheel image) or text that asks them to please
wait while the channel is located.

• A channel will disappear from the lineup if it is stopped on the Streamer or if the Streamer detects
a loss of input signal. The app should remove the channel immediately, however if a user is already
watching the channel when it disappears, terminate the video rendering and return the user to the
channel guide where they can select a new channel.

• If the Cisco StadiumVision Mobile administrator starts the Streamer before the video control room
has switched content to the encoder inputs, the user will receive an empty channel listing. To avoid
a poor user experience, display a message indicating that there aren’t any live channels currently
available.

Using the Latest Version of the app

• Prevent or warn a user if they are attempting to access SVM services with an older or incompatible
version of the app. Set the app to perform a self-check to see if a newer app version is available.
If a new version is detected, the app should:

– Block or warn the user that their app is out-of-date or may not perform as expected

– Encourage the user to upgrade

Connecting to Wi-Fi

• If the client looses complete Wi-Fi connectivity, the Operating System sends the app a notification.
The app should notify the user that the Wi-Fi service is not available and remind them of the Wi-Fi
network (SSID) to connect to.

• If a Streamer service announcement has not been received for 30 seconds, the SDK will notify the
user that the Cisco StadiumVision Mobile service is down. This could happen because the user
exited the venue and is out of range, if their device roamed to a non SVM SSID, or if they entered
an area in the venue without Wi-Fi. When this occurs, notify the user that the SVM service is not
available and remind them of the name of the Wi-Fi network (SSID) that they must be connected to
in order to receive the SVM service.

• The SDK continuously monitors signal quality as a user moves throughout a venue. As a result, the
SDK sends the app a ‘service down’ or ‘service up’ notification. These notifications can be used by
the app for conditional playback based on network conditions. It is recommended that conditional
playback is implemented as a passive informational service (as it should never display prompts that
require an active response from the user). Refer to Table 1-2 for app guidelines as to how the app
should respond depending on the state of the app when the notification is received.
1-10
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
Table 1-2 App Guidelines for Responding to Notifications

app State Event or Notification Recommended app Response

The app is rendering a video. Service down notification, due to poor
quality.

Overlay the active video plane with a
transparent graphic that contains the text
such as, "Video quality degraded due to poor
reception". The app continues the video
session without interruption regardless of
the poor quality and renders whatever video
it receives underneath the text overlay.

The app previously received a
service down notification with
the poor quality reason code. It is
currently rendering degraded
video with the "Video quality
degraded due to poor reception"
overlay.

Service down notification, due to poor
quality.

Remove the overlay and resume normal
video rendering. Do not restart the video
session.

The app is currently not rendering
video.

Service down notification, due to poor
quality.

Delete all channels from the channel list
page and replace them with a message such
as "Live video is currently unavailable due
to poor reception".

The app is currently not rendering
video. The app had previously
received a service down
notification with the poor quality
reason code and is currently
displaying the message "Live
video unavailable due to poor
reception" in the channel guide.

Service up notification, due to quality
rebounding.

Remove the "Live video unavailable due to
poor reception" message and populate the
channel page with the current list of
channels available.

The app previously received a
service down notification with
the poor quality reason code and
is currently rendering video with
the "Video quality degraded due
to poor reception" overlay.

The user now stops the video and returns to
the channel page.

Upon returning to the channel page, the user
sees the message "Live video unavailable
due to poor reception" instead of a list of
channels.
1-11
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
1-12
Cisco StadiumVision Mobile SDK Programmer’s Guide

C H A P T E R 2

Cisco StadiumVision Mobile API for Apple iOS

First Published: May 26, 2015
Revised: June 12, 2015

This chapter describes the Cisco StadiumVision Mobile SDK Release 2.1 for Apple iOS, and contains
the following sections:

• Introduction to Cisco StadiumVision Mobile SDK for iOS, page 2-1

• Cisco StadiumVision Mobile and iOS Developer Tools, page 2-2

• Download and Unpack the SDK, page 2-3

• Getting Started with the iOS Sample App, page 2-3

– Compile the Sample App, page 2-4

– Customize the Sample App, page 2-5

– Embed the Cisco StadiumVision Mobile SDK in an Existing App, page 2-6

• How Cisco StadiumVision Mobile Fits into the iOS Framework, page 2-10

• Cisco StadiumVision Mobile Methods and Functions for iOS, page 2-14

• Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples,
page 2-26

– Video Player View Controller Customization, page 2-28

– Video Channels, page 2-29

– Data Channels, page 2-31

• EVS C-Cast Integration, page 2-32

Introduction to Cisco StadiumVision Mobile SDK for iOS
The Cisco StadiumVision Mobile iOS SDK contains the following components bundled together:

• A set of static libraries, header files

• Sample app (with a complete Xcode project) and SDK video player

• API documentation (Doxygen build)

The API uses Objective-C classes and method calls to access the StadiumVision Mobile data distribution
and video playback functionality within the StadiumVision Mobile iOS SDK library.
2-1
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile and iOS Developer Tools
Table 2-1 describes the mobile operating system versions supported by the Cisco StadiumVision Mobile
SDK.

Table 2-1 Mobile OS Support

For additional information, refer to the Cisco StadiumVision Mobile Release Notes available from
Cisco.com at:

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html

Cisco StadiumVision Mobile and iOS Developer Tools
Table 2-2 lists the various iOS SDK build environment requirements.

Requirements

• Download and install the Apple Xcode IDE.

• In order to build and run the project, you must join or be an existing member of the Apple iOS
Developer Program. Additional information is available at:

https://developer.apple.com/programs/ios/

• Latest Cisco StadiumVision Mobile SDK tar.bz2 file, contact your Cisco account team for details as
to how to become part of the Cisco StadiumVision Mobile SDK partner program.

Note Beginning February 1, 2015, new iOS apps submitted to the App Store must include 64-bit support and
be built with the iOS 8 SDK. Apps that are updated will also need to follow the same requirements
beginning on June 1, 2015. It is recommended you use Xcode 6.x to support iOS 8 for new and existing
apps.

OS

Apple iOS

5.x 6.x 7.x 8.x

Cisco StadiumVision Mobile SDK Release 2.1 No No Yes Yes

Cisco StadiumVision Mobile SDK Release 2.0 No Yes Yes Yes

Table 2-2 Apple iOS Build Environment Requirements

Tool Version Description URL

Mac OSX 10.10 A Mac is required to build an iOS application which
includes the StadiumVision Mobile iOS SDK.

http://www.apple.com

Xcode 6.1 Apple development IDE and tool kit. http://developer.apple.com/xcode
2-2
Cisco StadiumVision Mobile SDK Programmer’s Guide

https://developer.apple.com/xcode/downloads/
http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html
https://developer.apple.com/programs/ios/

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Download and Unpack the SDK
Download and Unpack the SDK

Step 1 Download StadiumVisionMobileSample-ios-VERSION-RELEASE.tar.bz2. If you do not have this
file, contact your Cisco account team for details as to how to become part of the Cisco StadiumVision
Mobile SDK partner program.

Step 2 Extract the downloaded package into a directory. Table 2-3 lists the extracted content and includes a
brief description.

Note The Cisco StadiumVision Mobile SDK for iOS Release 2.1 does not include "libvoCTS.a" and
"voVidDec.dat." These files are no longer required in Release 2.1.

Note The clean.stream file that comes bundled with the SDK contains just one video channel. To provide app
developers with additional ways to test multiple channels, an additional set of clean.stream files is
available. For additional information refer to “Testing Your Cisco StadiumVision Mobile App” section
on page 1-8.

Step 3 Open the API documentation available in the Doxygen build that is downloaded with the SDK. Navigate
to the extracted folder contents, open the html folder > double-click index.html to launch the
documentation in a web browser.

Getting Started with the iOS Sample App
The Cisco StadiumVision Mobile SDK provided to app developers includes the source code for a iOS
Sample app. The purpose of the Sample app is to demonstrate what is possible and to enable a new app
developer to quickly get a working app up and running.

Table 2-3 Cisco StadiumVision Mobile SDK File Content

Contents Description

clean.stream Sample stream for the stream sender

Default-568h@2x.png Default theme graphic

html/ Contains Doxygen API documentation that is accessible
by opening the index.html file in a web browser

Makefile Text file referenced by the make command

Readme.txt File that contains information to get started

StadiumVisionMobile/ SVM header files and static library

StadiumVisionMobileSample/ Source code to the sample application

StadiumVisionMobileSample.xcodeproj Xcode project used to build the sample application

StadiumVisionMobileSender/ Stream sender add-on to the API

UnitTests/ Folder for unit tests
2-3
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Note Before creating a new app, review the Cisco StadiumVision Mobile SDK Best Practices, page 11-9.

Compile the Sample App

Step 1 Launch Xcode.

Step 2 Under File > Open > locate and select StadiumVisionMobileSample.xcodeproj from the extracted
folder contents. Click Open.

Step 3 Select the active scheme (iPhone 5 for example) from the iOS Simluator list as shown in Figure 2-1 (1).
To run the Sample app from an external device, connect the device to your computer and then select the
device from the iOS Simulator list.

Step 4 Click the Build and then run the current scheme arrow to build and run the Sample app with the
selected scheme as shown in Figure 2-1 (2).

Figure 2-1 Xcode—Set and Run the Active Scheme

Note If the external device you want to test on does not appear in the iOS Simulator list, be sure you’ve added
it to the list of iOS devices in the iOS Developer Program. Cisco StadiumVision Mobile SDK Release
2.1 supports iOS 64-bit, however the SVM SDK for iOS only includes support for the 32-bit simulator
and does not provide 64-bit simulator support.

Step 5 If the build was successful, a message appears followed by the Sample app launching in a new iOS
Simulator window or on the external device as shown in Figure 2-2.
2-4
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Figure 2-2 Xcode—Building the Sample App

Step 6 Test the Sample app.

Customize the Sample App
There are many ways to customize the Cisco StadiumVision Mobile Sample app including customizing
the Default-568h@2x.png graphic file to include a logo and specific colors.

Cisco Sample app Customized Video Player

The Sample app customized video player has the following properties:

• Implemented as "MyVideoViewController".

• Extends the "SVMVideoViewController" class.

• Handles all video overlays and gestures.

• Single-tap gesture and "Back", "Rewind"/"Live" overlay buttons.

• Two-finger double-tap gesture and stats overlay.

• Uses the "MyVideoViewController~iphone.xib" to layout the screen.

• Located in the "StadiumVisionMobileSample" Xcode project folder.

The video view shown in Interface Builder is connected to the "videoView" property and is of class type
"MyVideoView".
2-5
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Embed the Cisco StadiumVision Mobile SDK in an Existing App
Integration Checklist

The following list outlines integration steps for using the Cisco StadiumVision Mobile SDK.

1. Supported iOS version

– Set the app’s iOS version target set to iOS v4.0 or above.

2. Copy configuration files

– Copy the "cisco_svm.cfg" and "vompPlay.cfg" config files, and the "voVidDec.dat" license file
into the Xcode project.

3. Copy libraries

– Copy the "libStadiumVisionMobile.a" static library into the Xcode project.

Note The Cisco StadiumVision Mobile SDK for iOS Release 2.1 does not include "libvoCTS.a" that
was previously included. This file is no longer required in Release 2.1.

4. Include at least one objective C++ file in your project. We recommend renaming "main.m" to
"main.mm".

5. Set the Xcode Project "Build Settings"

Add the required linker flag in Xcode using Build Settings > Linking > Other Linker Flags > Add.
The required Xcode "Other Linker Flags" settings are shown in Figure 2-3.

– Add the "-ObjC" flag to the "Other Linker Flags" build setting. This ensures all Objective-C
categories are loaded from the StadiumVision Mobile static library.

Figure 2-3 Xcode Other Linker Flags

Figure 2-4 shows the Xcode build settings that apply to both the project and target settings.
2-6
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Figure 2-4 Xcode Build Settings

Note The standard architectures list may or may not include armv7s depending on the Xcode version you are
using.

Figure 2-5 shows the settings for generating position dependent and position independent code.

Figure 2-5 Xcode Build Settings—Position Dependent and Independent Code Generation
2-7
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
Figure 2-6 shows the Apple LLVM language settings.

Figure 2-6 Xcode Build Setting—Specify Apple LLVM 6.0 - Language C++

Note If using Xcode version 5 or earlier, set "Apple LLVM 5.1 - Language - C++" > "C++ Standard Library"
to "libstdc++ (GNU C++ standard library)". Applications that target iOS 6 and earlier do not need to
make this change.

6. Include required iOS libraries by adding frameworks in the target build phases pane of the Xcode
project, under "Link Binary With Libraries" section, as shown in Figure 2-7. A full list of required
libraries is listed below Figure 2-7.

Figure 2-7 Adding Frameworks in Xcode

Required iOS Libraries

• EventKit.framework

• MobileCoreServices.framework

• AVFoundation.framework

• CoreText.framework

• CFNetwork.framework

• SystemConfiguration.framework
2-8
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Getting Started with the iOS Sample App
• libresolv.dylib

• UIKit.framework

• Foundation.framework

• ExternalAccessory.framework

• CoreMedia.framework

• CoreGraphics.framework

• AudioToolbox.framework

• OpenGLES.framework

• QuartzCore.framework

• Security.framework

• MediaPlayer.framework

• libz.dylib

• libStadiumVisionMobile.a

• libStadiumVisionMobileSender.a

Configuration Files

There are two configuration files that must be bundled with any iOS app using the StadiumVision Mobile
SDK, as listed in Table 2-4.

Table 2-4 Configuration Files

Note The Cisco StadiumVision Mobile SDK for iOS does not include "voVidDec.dat" that was previously
included. This file is no longer required in Release 2.1.

Configuration File Name Description

"cisco_svm.cfg" The Cisco StadiumVision Mobile SDK configuration file that contains the "Field-of-Use"
parameters and some optional Wi-Fi network debugging information. The three
"field-of-use" properties in the "cisco_svm.cfg" configuration file that need to be
configured for each StadiumVision Mobile application are:

• Venue Name

• Content Owner

• App Developer

"vompPlay.cfg" Video decoder configuration file that contains the tuned decoding parameters. These
settings should never be changed. Any changes could result in poor video playback.
2-9
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Field of Use Configuration

There are three "field-of-use" (also known as the triplet key) properties in the "cisco_svm.cfg"
configuration file that need to be configured for each StadiumVision Mobile application. These three
fields must match the channel settings in the Cisco StadiumVision Mobile Streamer for the channels to
be accessible by the application:

{
 "license": {
 "venueName": "Stadium-A",
 "contentOwner": "Multi-Tenant Team-B",
 "appDeveloper": "Vendor-C"
 }
}

Wi-Fi Access Point Configuration

The "cisco_svm.cfg" configuration file can optionally include an array of Wi-Fi AP information that will
be used by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example
Wi-Fi AP info entry in the "cisco_svm.cfg" configuration file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

How Cisco StadiumVision Mobile Fits into the iOS Framework

Client Application Integration Overview
Figure 2-8 illustrates the high-level view of the Cisco StadiumVision iOS API libraries and common
framework components. The left side of the graphic represents how to modify the sample application,
and the right represents how the SDK is packaged.
2-10
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Figure 2-8 Cisco StadiumVision Mobile iOS SDK Components

iOS Model View Controller (MVC) Design Pattern
The Model View Controller (MVC) design pattern separates aspects of an application into three distinct
parts and defines how the three communicate. Figure 2-9 illustrates the Apple iOS MVC. As the name
implies, the application is divided into three distinct parts: Model, View and Controller. The main
purpose for MVC is reusability where you can reuse the same model for different views.

Figure 2-9 MVC Design Pattern

Cisco StadiumVision Mobile iOS API Class Overview
The singleton "StadiumVisionMobile" class provides the top-level API to start, configure, and stop the
framework. "SVMVideoViewController" classes are provided to play the video channels and to allow
for customization. Figure 2-10 illustrates the Cisco StadiumVision Mobile API classes.
2-11
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Figure 2-10 Cisco StadiumVision Mobile iOS API Classes

Video View Controller Inheritance
The iOS "UIViewController" and "UIView" classes are used as base classes. The customer application
can extend the Cisco StadiumVision Mobile classes. Figure 2-11 illustrates the UIViewController and
UIView classes.

Figure 2-11 Cisco StadiumVision Mobile Video Classes

Cisco StadiumVision Mobile Application Classes
The Cisco StadiumVision Mobile application classes:

• Extends and customizes the SVMVideoViewController class.

• Adds a UI overlay for controlling video playback (play, stop, close).

• Adds a UI overlay for displaying Cisco StadiumVision Mobile stats.

• Handles gestures to display UI overlays with the MyVideoViewController class.
2-12
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
How Cisco StadiumVision Mobile Fits into the iOS Framework
Figure 2-12 Cisco StadiumVision Mobile Sample Application Classes

Customer Application Roles

Figure 2-13 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlays

Figure 2-13 Customer Application Responsibilities
2-13
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Cisco StadiumVision Mobile Methods and Functions for iOS

Cisco StadiumVision Mobile iOS API Summary

Table 2-5 summarizes the iOS API library. Detailed API information is available in documentation
Doxygen build that is downloaded with the SDK. Navigate to the extracted folder contents, open the
html folder > double-click index.html to launch the documentation in a web browser.

Table 2-5 Cisco StadiumVision Mobile iOS API Summary

Return Type API Method Name API Method Description

BOOL isConnectedToVenue Gets whether the device is currently inside or outside of the
venue.

NSArray* getDataChannelListArray Gets a snapshot array of the currently available data
channels.

NSArray* getFileChannelListArray Gets a snapshot array of the currently available file
channels.

NSArray* getVideoChannelListArray Gets a snapshot array of the currently available video
channels.

NSArray* getStreamerArray Gets an array of detected SVM Streamer servers as
‘SVMStreamer’ objects

NSDictionary* getConfig Gets the SDK configuration at run-time.

NSDictionary* stats Gets an NSDictionary of current SVM SDK stats as a
dictionary of name/value pairs.

Note Stats are currently only available for the video
channel (not data channels).

NSInteger* getFileStatusfor Filename:forChannel: Gets the filesystem filename status for any channel.

NSInteger* getFileStatusforFilename:forChannel
Name:

Gets the filesystem filename status for any channel name.

NSMutableDictionary* getFileDistributionTable: Gets the file distribution table details.

NSString* getFileDistributionLocalFilename:for
Channel:

Gets the local filesystem filename for any object given its
URI and the file channel.

NSString* getFileDistributionLocalFilename:for
ChannelName:

Gets local filesystem filename for any object given its URI
and the file channel name.

NSString* getDeviceUUID Gets the device UUID generated by the SVM SDK and is
documented in the iOS SVM header file.

NSString* getAppSessionUUID Gets the app session UUID that is generated by the SVM
SDK. This UUID uniquely identifies each time the SDK is
started and is used for consistent statistics collection and
reporting.

NSString* getVideoSessionUUID Gets the video session UUID.

NSUInteger getServiceDownReasonsBitmap Gets the bitmap of reasons why the service state was down.

StadiumVisionMobile* sharedInstance Gets a reference to the API singleton class used for all API
calls.
2-14
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
SVMServiceState getServiceState Gets the current SVM service state.

SVMStatus* addDataChannelListDelegate: Registers a callback delegate to receive all data channel list
updates.

SVMStatus* addDataChannelObserver: Registers an observer class to receive data for a particular
data channel.

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data updates for a
particular data channel.

SVMStatus* addDataChannelObserver:forChannel
Name:

Registers an observer class to receive all data updates for a
particular data channel name.

SVMStatus* addFileChannelListDelegate: Registers to callback delegate to receive all file channel list
updates.

SVMStatus* addFileChannelObserver:forChannel: Registers an observer class to receive all file updates for a
particular file channel.

SVMStatus* addFileChannelObserver:forChannelN
ame:

Registers an observer class to receive all file updates for a
particular file channel name.

SVMStatus* addVideoChannelListDelegate: Registers a callback delegate to receive all video channel
list updates.

SVMStatus* allowAllStreamers Allows all Streamers to be processed by the SDK.

SVMStatus* allowPlaybackWhenViewDisappears Allows the video player to continue rendering the channels
when the video player view has lost focus.

SVMStatus* allowStreamers: Allows only specific Streamers in a given array to be
processed by the SDK.

SVMStatus* disableQualityMonitoring Disables quality monitoring within the SDK.

SVMStatus* enableQualityMonitoring Enables quality monitoring within the SDK.

SVMStatus* initSDK Initializes the SDK.

SVMStatus* loadConfigFile Loads the security configuration data.

SVMStatus* removeDataChannelListDelegate: Unregisters the callback delegate from receiving the data
channel list updates.

SVMStatus* removeDataChannelObserver: Unregisters an observer class from receiving data for a
particular data channel.

SVMStatus* removeDataChannelObserver:forChan
nel:

Unregisters an observer class from receiving any data
updates for a particular data channel.

SVMStatus* removeDataChannelObserver:forChan
nelName:

Unregisters an observer class from receiving any data
updates for a particular data channel name.

SVMStatus* removeFileChannelListDelegate: Unregisters the callback delegate from receiving the file
channel list updates.

SVMStatus* removeFileChannelObserver:forChan
nel:

Unregisters an observer class from receiving any file
updates for a particular file channel.

SVMStatus* removeFileChannelObserver:forChan
nel:Name:

Unregisters an observer class from receiving any file
updates for a particular file channel name.

Table 2-5 Cisco StadiumVision Mobile iOS API Summary (continued)

Return Type API Method Name API Method Description
2-15
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Return Status Object

Each API call returns a SVMStatus object whenever applicable. Table 2-6 lists the SVMStatus object
fields.

Table 2-6 SVMStatus class

Table 2-7 lists the hash keys and description for the Stats API.

SVMStatus* removeVideoChannelListDelegate: Unregisters the callback delegate from receiving the video
channel list updates.

SVMStatus* setConfig: Sets the SDK configuration at run time.

SVMStatus* setConfigWithString: Sets the SDK configuration at run time with the config
JSON string.

SVMStatus* setLogLevel: Sets the logging output level of the SDK, with the
"DEBUG" level being more verbose than the "INFO" level.

SVMStatus* setStatsHookDelegate: Sets the callback stats hook delegate.

SVMStatus* shutdown Stops the SVM SDK.

SVMStatus* start Starts the SVM SDK and any SVM background threads and
component managers.

SVMStatus* version Gets the SVM version string.

SVMWifiInfo* wifiInfo Returns the current Wi-Fi network connection information.
This information gets collected in the statistics information
that gets uploaded to the Reporter server.

void onData Implemented by the customer app to support the
"SVMDataObserver" protocol. This delegate method is
used as a callback from the SVM SDK. Each callback from
the SDK to the customer app provides a received data
message on the given data channel, delivered as a byte array
(NSData).

Table 2-5 Cisco StadiumVision Mobile iOS API Summary (continued)

Return Type API Method Name API Method Description

Type BOOL NSString

Property isOk errorString

Description
Boolean indicating whether the API call was
successful or not.

If the API call was not successful (isOk == NO),
this string describes the error.

Example Usage

// make an api call
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
SVMStatus status = svm.start();
// if an error occurred
if (status.isOk == NO) {
// display the error description
NSLog(@"Error occurred: %@" + status.errorString);
2-16
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Table 2-7 Stats API Hash Keys and Descriptions

Stats Hash Key Stats Description

announcement_session_id Video session announcement ID.

announcement_session_title Session announcement name.

compressedChannelAnnouncementsReceived The number of compressed channel announcement messages received.

num_channel_announcement_igmp_restarts The number if IGMP restarts performed on the channel announcement
listener.

num_channel_announcement_version_mismatches The number of channel announcements received from an incompatible
Streamer version.

num_channel_announcements_received Total number of multicast channel announcement messages received.

num_dropped_video_frames Total number of video frames dropped.

num_license_key_mismatches The number of channel announcements received where the license keys
did not match.

num_ts_discontinuities Total number of MPEG2-TS packet discontinuities.

protection_windows Total number of protection windows sent.

session_link_indicator Health of the Wi-Fi network connection. Ranges from 0 (poor) to 10
(excellent).

session_uptime Length of time the session has been active (in seconds).

total_num_bytes_written Total number of video bytes played.

window_error Total number of protection windows with more packets per window
than can be supported by Cisco StadiumVision Mobile.

window_no_loss Total number of protection windows with no dropped video packets.

window_recovery_failures Total number of protection windows that could not recover dropped
packets. Recovery failure occurs when the number of received repair
packets is less than the number of dropped video packets.

window_recovery_successes Total number of protection windows with recovered video packets.

window_warning Total number of protection windows with more packets per window
than the recommended value.
2-17
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Video Player Activity API Summary

The "SVMVideoVideoController" class can be extended and customized. Table 2-8 lists the
SVMVideoPlayerActivity API methods and descriptions. Additional API methods and details are listed
in the Doxygen build.

Table 2-8 Video View Controller API Summary

NS Notification Events

The StadiumVision Mobile SDK broadcasts the following iOS NSNotification events for use by the
client application (listed in Table 2-9).

Return Type API Method Name API Method Description

SVMStatus* playLive Moves the video playback buffer pointer to the head ("live") offset position
in the video playback buffer. This convenience method acts as a wrapper for
the "seekAbsolute" API method; making "playLive()" equivalent to
"seekAbsolute(0)".

SVMStatus* playVideoChannel: Starts playback of a particular video channel, changing channels on
subsequent calls.

SVMStatus* rewindForDuration: Rewinds the video playback buffer pointer relative to the current playback
buffer offset position.

SVMStatus* seekAbsolute: Moves the video playback buffer pointer relative to the starting "live" video
playback buffer offset position. The SVM SDK currently buffers 30 seconds
of previously played video data that can be used for playing previously
recorded video data.

• A positive duration value moves the video play-head away from the
latest "live" video data in the video history buffer.

• Should a duration be given that is larger than the available size of the
video history buffer, then the SVM SDK moves the video play-head to
the end of the video history buffer.

SVMStatus* seekRelative: Moves the video playback buffer pointer relative to the current video
playback buffer offset position. The SVM SDK currently buffers 30 seconds
of previously played video data that can be used for playing previously
recorded video data.

• A positive duration value forwards the video play-head towards the
latest "live" video data in the video history buffer.

• Should a duration be given (positive or negative) that is larger than the
available size of the video history buffer, then the SVM SDK moves the
video play-head as far as possible within the video history buffer.

void setRenderVideoView: Sets the iOS UI video view where video frames will get rendered.

Table 2-9 NSNotification Event Properties

Event Constant Description

kSVMVideoEventNotification Constant defining the video event generated by the StadiumVision Mobile API.

kSVMVideoOpenState Occurs when the video player initially opens the video channel session.
2-18
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
The following source code registers to receive the Cisco video notifications:

#include "StadiumVisionMobile.h"
// register to handle the video buffering events
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoEvent:)
 name:kSVMVideoEventNotification
 object:nil];

The following source code handles the Cisco video notifications:

#include "StadiumVisionMobile.h"

// video event notification handler
 (void)onVideoEvent:(NSNotification*)notification {
 // get the passed "SVMEvent" object
 SVMEvent *event = [notification object];

// determine the video event type
 switch (event.type) {
 case kSVMEventTypeVideoBufferingActive:
 // activate the UI "buffering" indicator
 break;
 case kSVMEventTypeVideoBufferingInactive:
 // deactivate the UI "buffering" indicator
 break;
 }
}

The following example shows how to subscribe to receive the video player broadcast notifications:

// subscribe to receive video channel state change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoChannelStateChanged:)
 name:kSVMVideoPlayerChannelStateChange
 object:nil];

The following example shows how to parse the video player broadcast notifications for (1) the video
channel name and (2) the video channel state:

// get the video channel state dictionary from the notification
NSDictionary *stateDict = [notify userInfo];

// get the video channel name
NSString *videoChannelName = [stateDict objectForKey:kSVMVideoPlayerChannelNameKey];

// get the video channel state
NSString *videoChannelState = [stateDict objectForKey:kSVMVideoPlayerChannelStateKey];

kSVMVideoPlayState Occurs when the video player starts playing the video channel.

kSVMVideoRewindState Occurs when the video player rewinds (seeks backwards) within the video history
buffer.

kSVMVideoLiveState Occurs when the video player moves the play-head to the beginning "live" position.

kSVMVideoPauseState Occurs when the video player pauses video playback.

kSVMVideoStopState Occurs when the video player stop video playback.

kSVMVideoCloseState Occurs when the video player closes the video channel session.

Table 2-9 NSNotification Event Properties (continued)

Event Constant Description
2-19
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
// determine the video channel state
if ([videoChannelState isEqualToString:kSVMVideoPlayState] == YES) {
 // video player is now playing
 NSLog(@"### VIDEO PLAYER: PLAYING");
} else if ([videoChannelState isEqualToString:kSVMVideoStopState] == YES) {
 // video player is now stopped
 NSLog(@"### VIDEO PLAYER: STOPPED");
}

Video Player State Flags

The SVM video player class ("SVMVideoViewController") provides a set of state flags that the inherited
video player class (ie: "MyVideoViewController") can use to monitor the current video player state:

• BOOL isOpen;

• BOOL isPlaying;

• BOOL isAppActive;

• BOOL isVisible;

• BOOL isBackgroundPlaybackAllowed;

• BOOL isEventsRegistered;

• BOOL isEventHandlersRegistered

Table 2-10 provides a description of each state flag provided by the StadiumVision Mobile video player
("SVMVideoViewController"):

Table 2-10 Video Player State Flags

State Flag Description

isAppActive Boolean flag indicating when the container iOS app is in the
foreground.

isBackgroundPlaybackAllowed Boolean flag indicating if the video player is allowed to continue
rendering the audio and video channels when the video player view
has lost focus ("allowPlaybackWhenViewDisappears").

isEventHandlersRegistered Boolean flag indicating whether the notification event handlers
have been registered.

isEventsRegistered Boolean flag indicating when an event is registered.

isOpen Boolean flag indicating that the video player has opened a session
for video channel playback.

isPlaying Boolean flag indicating when the video player is currently playing
a video channel.

isVisible Boolean flag indicating when the video player view is visible. This
is useful when the video player is allowed to continue playing the
audio / video channels when the video player has lost focus
("allowPlaybackWhenViewDisappears").
2-20
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Video Player Background Audio

Starting Cisco StadiumVision Mobile SDK Release 1.3, the SVM video player
("SVMVideoViewController") provides a mode that allows the video player to continue rendering the
audio and video channels when the video player view has lost focus. This mode allows the audio to still
be played even when the user navigates away from the video player screen (view controller) to a different
app screen; causing the video player to be hidden.

The background audio mode is disabled in the "SVMVideoViewController" by default. The following
example shows how to set the "SVMVideoViewController" mode that allows the video player to continue
rendering audio and video when the "SVMVideoViewController" loses focus (is not visible):

// create the video view controller
self.videoViewController = [[MyVideoViewController alloc] init];

// allow the video player to continue playing when the video view disappears
[self.videoViewController allowPlaybackWhenViewDisappears:YES];

Video Player Channel Inactive Callback

To detect that a currently playing video channel has become invalid (due to Streamer server admin
changes), the SVM video player ("SVMVideoViewController") provides a callback to tell the video
player sub-class (ie: "MyVideoViewController") that the currently playing channel is no longer valid.

When a channel becomes invalid, playback of the video channel is automatically stopped.

To receive these callbacks, the "onCurrentChannelInvalid" method must be overridden by the
'SVMVideoViewController' sub-class (ie: "MyViewViewController"). The following example shows the
method signature and implementation of this overridden callback method:

// OVERRIDDEN by the 'SVMVideoViewController' sub-class; indicates that the current
channel is invalid
- (void)onCurrentChannelInvalid
{
 NSLog(@"Current channel is no longer valid: dismissing video view controller");

 // dismiss this modal video view controller
 [self dismissModalViewControllerAnimated:YES];
}

Receiving Service Up and Down Notifications

Beginning with Release 2.0, Cisco StadiumVision Mobile SDK includes a mechanism to determine if
the Cisco StadiumVision Mobile service is available or not. The SDK provides an indicator to the
application indicating if the StadiumVision Mobile service is up or down. This indication should be used
by the application to indicate to the user whether the StadiumVision Mobile service is available or not.
Service is declared ‘down’ by the SDK when any of the following are true:

• The SVM SDK detects that the video quality is poor.

• The SVM SDK detects that no valid, licensed channels are available.

• The mobile device’s Wi-Fi interface is disabled.

Poor video quality can occur when the user is receiving a weak Wi-Fi signal; causing data loss. There
are two different ways that the iOS app can get the "Service State" from the SVM SDK:

• Register to receive the "Service Up/Down" notifications.

• Fetch the current service state from the SDK on-demand.
2-21
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
When the app receives the "Service Down" notification, the SDK will supply a bitmap containing the
reasons why the service was declared as ‘down’ by the SDK. The ‘reasons’ bitmap is given in Table 2-11:

Note For additional Service Down Notification details, refer to “Cisco StadiumVision Mobile SDK Best
Practices” section on page 1-9.

The following example shows how to register to receive the "Service Up/Down" notifications from the
StadiumVision Mobile SDK:

#import "StadiumVisionMobile.h"

// subscribe to receive service state up / down change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onServiceStateChanged:)
 name:kSVMServiceStateChangedNotification
 object:nil];

// handle the received service state notifications
- (void)onServiceStateChanged:(NSNotification*)notify
{
 // get the service state dictionary from the notification
 NSDictionary *serviceStateDict = [notify userInfo];

 // get the service state integer value
 NSNumber *serviceStateNumber = [serviceStateDict
objectForKey:kSVMServiceStateObjectKey];
 NSUInteger serviceState = [serviceStateNumber unsignedIntegerValue];

 // if the service state is down
 if (serviceState == kSVMServiceStateDown) {
 // service state is down
 NSLog(@"*** SERVICE STATE: DOWN");

 // get the service state down reasons bitmap
 NSNumber *reasonsNumber = [serviceStateDict
objectForKey:kSVMServiceStateChangeReasonsObjectKey];
 NSUInteger reasonsBitmap = [reasonsNumber unsignedIntegerValue];

 // determine the reason(s) why the service state went down
 if (reasonsBitmap & kSVMServiceDownReasonSDKNotRunning) {
 NSLog(@"SERVICE DOWN: SVM SDK was stopped");
 } else if (reasonsBitmap & kSVMServiceDownReasonWiFiDown) {
 NSLog(@"SERVICE DOWN: WiFi connection is down");
 } else if (reasonsBitmap & kSVMServiceDownReasonNoChannels) {
 NSLog(@"SERVICE DOWN: No valid licensed SVM channels available");
 } else if (reasonsBitmap & kSVMServiceDownReasonPoorQuality) {
 NSLog(@"SERVICE DOWN: Poor quality conditions detected");
 }

 // show the service down message

Table 2-11 Service Down Reason Notification

Service Down Reason Constant

Poor video quality networking conditions detected kSVMServiceDownReasonPoorQuality

Wi-Fi connection is down kSVMServiceDownReasonWiFiDown

No valid SVM channels have been detected kSVMServiceDownReasonNoChannels
2-22
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
 [self showServiceDownMessage];
 } else if (serviceState == kSVMServiceStateUp) {
 // service state is up
 NSLog(@"*** SERVICE STATE: UP");
 }
}

Getting the Current Service Up or Down State On Demand

The "getServiceState" API method can be used to fetch the current service state from the SDK. The
method signature of the "getServiceState" API call is given below:

// api call to fetch the current svm 'service state' on-demand
- (SVMServiceState)getServiceState;

The following example show how to fetch the current service state from the SVM SDK using the
"getServiceState" API call:

#import "StadiumVisionMobile.h"

// get the svm api context
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// get the current svm service state
SVMServiceState state = [svm getServiceState];

// determine the current service state
if (serviceState == kSVMServiceStateUp) {
 // service state is up
 NSLog(@"*** SERVICE STATE: UP");
} else if (serviceState == kSVMServiceStateDown) {
 // service state is down
 NSLog(@"*** SERVICE STATE: DOWN");
}

In-Venue Detection

Cisco StadiumVision Mobile SDK Release 1.3 provides a mechanism to detect whether the mobile
device is connected within the SVM-enabled venue or not. There are two different ways that the iOS app
can get this "In-Venue Detection" state from the SVM SDK:

1. Register to receive the "In-Venue Detection" notifications.

2. Fetch the current "In-Venue" state from the SDK on-demand.

Receiving In-Venue Detection Notifications

The following example shows how to register to receive the "Service Up/Down" notifications from the
SVM SDK:

// subscribe to receive in-venue connection change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVenueConnectionChanged:)
 name:kSVMVenueConnectionUpdateNotification
 object:nil];

// handle the venue connection changed event
- (void)onVenueConnectionChanged:(NSNotification*)notify
{
 // get the in-venue detection dictionary from the notification
 NSDictionary *inVenueDetectionDict = [notify userInfo];
2-23
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
 // get the in-venue detection value
 NSNumber *inVenueDetectionNumber = [inVenueDetectionDict
objectForKey:kSVMVenueConnectionStateObjectKey];
 BOOL isConnectedToVenue = [inVenueDetectionNumber boolValue];

 // log whether we are inside the venue
 NSLog(@"###### Venue Connection Updated: %@", (isConnectedToVenue ? @"INSIDE" :
@"OUTSIDE"));
}

Get the Current In-Venue State On-Demand

The "isConnectedToVenue" API method can be used to fetch the current in-venue state from the SDK.
The method signature of the "isConnectedToVenue" API call is given below:

// returns whether the device is connected to the licensed SVM venue or not
- (BOOL)isConnectedToVenue;

The following example shows how to fetch the current service state from the SVM SDK using the
"getServiceState" API call:

// get a reference to the svm api
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// get whether the device is currently connected to the SVM licensed venue
BOOL isConnectedToVenue = [svm isConnectedToVenue];

// log whether the device is currently connected to the SVM licensed venue
NSLog(@"###### Venue Connection State: %@", (isConnectedToVenue ? @"INSIDE" :
@"OUTSIDE"));

Set the SDK Configuration at Run-Time

Previously, the Cisco StadiumVision Mobile SDK could only be configured by using a JSON-formatted
config file ("cisco_svm.cfg") bundled within the iOS app. Starting with Release 2.0, the application can
set the SDK configuration at run-time through an API method. This allows the application to
dynamically configure the SDK. For example, the application can fetch the SDK configuration
information from a network connection, and then pass that configuration to the SDK.

Two different methods are provided for setting the SDK configuration at run-time:

• "setConfig"

• "setConfigWithString"

The following example shows how to set the SDK configuration using the "setConfig" API
method:
#import "StadiumVisionMobile.h"
// get the stadiumvision mobile api instance
StadiumVisionMobile *svmInstance = [StadiumVisionMobile sharedInstance];
// create the config dictionary with the set of licensing keys
NSMutableDictionary *configDict = [[[NSMutableDictionary alloc] init] autorelease];
NSMutableDictionary *licenseDict = [[[NSMutableDictionary alloc] init] autorelease];
[licenseDict setObject:@"MyVenueNameKey" forKey:@"venueName"];
[licenseDict setObject:@"MyContentOwnerKey" forKey:@"contentOwner"];
[licenseDict setObject:@"MyAppDeveloperKey" forKey:@"appDeveloper"];
[configDict setObject:licenseDict forKey:@"license"];
// update the stadiumvision mobile configuration
[svmInstance setConfig:configDict];
2-24
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Cisco StadiumVision Mobile Methods and Functions for iOS
Scalable File Distribution

The Cisco StadiumVision Mobile SDK libraries will support file channels that are easily accessible to
the mobile client application. Table 2-12 lists the Cisco StadiumVision Mobile scalable file distribution
API.

Data Channels

Table 2-13 lists the Cisco StadiumVision Mobile data channel APIs.

Table 2-12 Scalable File Distribution and Service API Summary

API Return Type File Service API Method Name Method Description

NSArray* getFileChannelListArray Gets a snapshot array of the currently available
file channels.

NSMutableDictionary* getFileDistributionTable Gets file distribution table details.

NSString* getFileDistributionLocalFilename Gets the local filesystem filename for any object
given its URI and the file channel.

NSString* getFileDistributionLocalFilename:forChannel Gets the local filesystem filename for any object
given its URI and the file channel.

NSString* getFileDistributionLocalFilename:forChannelN
ame

Gets local filesystem filename for any object
given its URI and the file channel name.

SVMStatus* addFileChannelListDelegate Registers a callback delegate to receive all file
channel list updates.

SVMStatus* addFileChannelObserver Registers an observer class to receive data for a
particular file channel.

SVMStatus* addFileChannelObserver:forChannel Registers an observer class to receive all file
updates for a particular file channel.

SVMStatus* addFileChannelObserver:forChannelName Registers an observer class to receive all file
updates for a particular file channel name.

SVMStatus* removeFileChannelListDelegate Unregisters the callback delegate from
receiving the file channel list updates.

SVMStatus* removeFileChannelObserver Unregisters an observer class from receiving file
for a particular file channel.

SVMStatus* removeFileChannelObserver:forChannel Unregisters an observer class from receiving
any file updates for a particular file channel.

SVMStatus* removeFileChannelObserver:forChannelName Unregisters an observer class from receiving
any file updates for a particular file channel
name.

Table 2-13 Data Distribution and Service API Summary

API Return Type Data Service API Method Name Method Description

NSArray* getDataChannelListArray Gets a snapshot array of the currently available
data channels.

SVMStatus* addDataChannelListDelegate: Registers a callback delegate to receive all data
channel list updates.
2-25
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
Adding Cisco StadiumVision Mobile Services to an iOS
App—Code Structure and Samples

The StadiumVision Mobile SDK automatically handles the following events:

• Dynamic video channel discovery and notification

• Dynamic data channel discovery and notification

• Automatic SDK shutdown/restart in response to Wi-Fi up/down events

• Automatic SDK shutdown/restart in response to iOS life-cycle events

• Management of multicast network data threads

• On-demand management of video/audio decoding threads

• Automatic statistics reporting to the StadiumVision Mobile Reporter server

SVMStatus* addDataChannelObserver: Registers an observer class to receive data for a
particular data channel.

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data
updates for a particular data channel.

SVMStatus* addDataChannelObserver:forChannelName: Registers an observer class to receive all data
updates for a particular data channel name.

SVMStatus* removeDataChannelListDelegate: Unregisters the callback delegate from
receiving the data channel list updates.

SVMStatus* removeDataChannelObserver: Unregisters an observer class from receiving
data for a particular data channel.

SVMStatus* removeDataChannelObserver:forChannel: Unregisters an observer class from receiving
any data updates for a particular data channel.

SVMStatus* removeDataChannelObserver:forChannelName: Unregisters an observer class from receiving
any data updates for a particular data channel
name.

void onData Supports the "SVMDataObserver" protocol
when implemented by the customer app. This
delegate method is used as a callback from the
SVM SDK. Each callback from the SDK to the
customer app provides a received data message
on the given data channel, delivered as a byte
array (NSData).

void onDataChannelListUpdated Results in the method being called by our API to
notify you of data channel changes.

void onData:withChannelName: Results in the method being called by our API to
notify you of changes for the given channel.

Table 2-13 Data Distribution and Service API Summary (continued)

API Return Type Data Service API Method Name Method Description
2-26
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
This section describes the Cisco StadiumVision Mobile SDK workflow, and contains the following
sections:

• Starting the SDK, page 2-27

• Setting the Log Level, page 2-27

• Getting the SDK Version String, page 2-27

• Displaying the Device UUID, page 2-27

• Shutting Down the SDK (Optional), page 2-28

Starting the SDK

The StadiumVision Mobile SDK needs to be started at the application initialization by calling the "start"
API method as in the following example:

#import "StadiumVisionMobile.h"
// get a reference to the StadiumVision Mobile API
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// start the StadiumVision Mobile SDK
[svm start];

Setting the Log Level

Sets the logging output level of the SDK, with the "DEBUG" level being more verbose than the "INFO"
level. An example follows:

// start method sets logs to INFO by default
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
[svm start];

// set the desired log level
[svm setLogLevel:SVM_API_LOG_DEBUG];

Getting the SDK Version String

The example below gets the StadiumVision Mobile SDK version string:

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// get the sdk version string
NSString *sdkVersion = [svm version];

Displaying the Device UUID

The Cisco StadiumVision Mobile SDK is unable to include the MAC address in the periodic stats that it
sends to the Cisco StadiumVision Mobile Reporter because Apple does not permit applications to access
any device information that can be used to identify that device or its owner. As a substitute for the MAC
address, the SDK instead includes a SVM Device UUID (universally unique identifier) that is unique for
every device. The UUID allows Reporter data to be correlated with a specific device. In order for the
correlation to work, the mobile app must display the UUID somewhere in its menu system (for example
on the About or Help tabs).
2-27
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
The app can retrieve the UUID from the SDK via the code sample below. The getDeviceUUID method
is documented in the iOS SVM header file.

StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
NSString *deviceUUID = [svm getDeviceUUID];
NSLog(@"Device UUID is %@", deviceUUID);

Note The Cisco StadiumVision Mobile Device UUID should not be confused with the Unique Device
Identifier (UDID) that is displayed in iTunes.

Shutting Down the SDK (Optional)

The StadiumVision Mobile SDK automatically shuts-down and restarts based upon the iOS life-cycle
notifications (NSNotifications). The client iOS application does not need to explicitly stop and restart
the StadiumVision Mobile SDK. This ‘shutdown’ API is provided in case a customer use-case requires
an explicit SDK shutdown.

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// shutdown the StadiumVision Mobile SDK
[svm shutdown];

Video Player View Controller Customization
This section describes how to customize the video player, and contains the following sections:

• Default Cisco Video Player View Controller, page 2-28

• Customized Video Player, page 2-29

• Cisco Sample app Customized Video Player, page 2-5

Default Cisco Video Player View Controller

The default Cisco video player has the following features:

• Implemented as a separate iOS "UIViewController."

• Support for fullscreen and partial-screen video views.

• Video frames rendered using an iOS "UIView" and OpenGL layer (CAEAGLLayer).

• Customizable by extending the "SVMVideoViewController" class.

• The Cisco Sample app uses a customized video player.
2-28
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
Customized Video Player

To customize the video player, extend the "SVMVideoViewController" base class as in the following
example:

#import "SVMVideoViewController.h";

@interface MyVideoViewController : SVMVideoViewController {
}

Figure 2-14 Video Player Customization

Video Channels
This section describes the Cisco StadiumVision Mobile SDK video channels and contains the following
sections:

• Presenting the Video Channel List, page 2-29

• Playing a Video Channel, page 2-30

• Getting the Video Channel List, page 2-30

• Seeking Within the Video Buffer, page 2-30

• Video Player View Controller Customization, page 2-28

Presenting the Video Channel List

Table 2-14 lists the "SVMChannel" video channel objects containing all of the information needed to
display the channel list to the user.

Table 2-14 SVMChannel Object Properties

SVMChannel Property Property Description

appDeveloper Name of the application developer.

bandwidthKbps Nominal video stream bandwidth (in kbps).

channelText Complete text description of the video channel.

contentOwner Name of the content owner.

name Name of the video channel.
2-29
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
Playing a Video Channel

The example below demonstrates these actions:

• Selects a channel from the locally saved channel list.

• Presents the video view controller modally.

• Commands the video view controller to play the selected channel.

#import "StadiumVisionMobile"

// get the user-selected video channel object
SVMChannel *selectedChannel = [videochannelList objectAtIndex:0];

NSLog(@"Selected Video Channel = %@", selectedChannel.name);

// create the video view controller
MyVideoViewController *myVC = [[MyVideoViewController alloc] init];

// present the modal video view controller
myVC.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
[self presentModalViewController:myVC animated:YES];

// play the selected video channel
[myVC playVideoChannel:selectedChannel];

Getting the Video Channel List

The client application registers to receive callback whenever the video channel list is updated, as in the
following example:

// register to receive video channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addVideoChannelListDelegate:self];

The StadiumVision Mobile SDK will callback the client application with any video channel list updates.

#import "StadiumVisionMobile.h"
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>
// video channel handler (array of 'SVMChannel' objects)
 -(void)onVideoChannelListUpdated:(NSArray*)channelList;

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in the device RAM. The following example jumps
backwards 20 seconds in the video buffer (instant replay).

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// rewind 20 seconds
[svm rewindForDuration:-20000];

sessionNum Session number of the channel.

venueName Name of the venue.

Table 2-14 SVMChannel Object Properties (continued)

SVMChannel Property Property Description
2-30
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
The example below jumps back to the top of the video buffer ("live" video playback):

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
// play at the "live" video offset
[svm playLive];

Data Channels
This section describes the Cisco StadiumVision Mobile SDK data channels and contains the following
sections:

• Getting the Data Channel List, page 2-31

• Observing a Data Channel, page 2-31

Getting the Data Channel List

In the following example, the client application registers to receive callback whenever the data channel
list is updated.

// register to receive data channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addDataChannelListDelegate:self];

In this example, the StadiumVision Mobile SDK will callback the client application with any data
channel list updates:

#import "StadiumVisionMobile.h"

// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>

// data channel handler (array of 'SVMChannel' objects)
 (void)onDataChannelListUpdated:(NSArray*)channelList;

Observing a Data Channel

In the following example, the registered class needs to implement the "SVMDataObserver" protocol:

#import "SVMDataObserver.h"
@interface DataChannelViewController : UIViewController <SVMDataObserver>

In this example, the "onData:withChannelName" method is called to push the received data to the
registered class:

-(void)onData:(NSData*)data withChannelName:(NSString *)channelName {
 // convert the data bytes into a string
 NSString *dataStr = [[NSString alloc] initWithBytes:[data bytes]
 length:[data length]
 encoding:NSUTF8StringEncoding];

 // display the data bytes and associated channel name
 NSLog(@"ChannelListViewController: onData callback: "
 "channelName = %@, data = %@", channelName, dataStr);

 [dataStr release];}
2-31
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 2 Cisco StadiumVision Mobile API for Apple iOS
Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples
EVS C-Cast Integration

Note Cisco StadiumVision Mobile is supported with EVS C-Cast version 2.x only. EVS C-Cast version 3.x is
not supported.

The steps below describe a high level workflow of how an Cisco StadiumVision Mobile powered C-Cast
app gains access to the XML timeline and media files.

1. Register a callback to be notified when a file channel becomes available, using
addFileChannelDelegate

2. Register to receive the channel notification using
[svm addFileChannelObserver:self forChannelName:@"something"]

3. (Optional) Listen for file channel list updates and potentially register using
(void)onFileChannelListUpdated:(NSMutableDictionary *)fileChannelList {}

4. Handle the file reception (movies/thumbnails/timeline) using
(void)onFile:(NSData *)file withChannelName:(NSString *)channelName {}

5. Check if a file channel is already available, using getFileChannelListArray

6. If a channel is already available or when a callback notification is received, register a file channel
observer, using addFileChannelObserver

7. Check if a file with the name ccast-timeline.xml is already available, using
getFileDistributionLocalFilename

8. If ccast-timeline.xml is not yet available wait for additional files to arrive, using onFile(). Each time
onFile() is called do a corresponding check with getFileDistributionLocalFilename to see if the
new file is ccast-timeline.xml.

9. Once ccast-timeline.xml has been received, parse it using the steps in chapter 5 (How to build the
media path) of the C-Cast API spec, then build the media path for all media files. Contact James
Stellphlug (j.stellpflug@evs.com) to obtain the C-Cast API documentation.

10. For each file media path, remove the path prefix so that only the filename remains. For example:
http://www.mydomain.com/videos/abc/def/ghi/abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8
becomes
abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8

11. For each filename cycle through onFile() and getFileDistributionLocalFilename until all files
have been received.

12. Be prepared for ccast-timeline.xml to change at any time. Repeat steps 7-9 whenever it changes.
2-32
Cisco StadiumVision Mobile SDK Programmer’s Guide

Cis
C H A P T E R 3

Cisco StadiumVision Mobile API for Google
Android

First Published: May 26, 2015

This chapter describes the Cisco StadiumVision Mobile SDK Release 2.1 for Google Android, and
contains the following sections:

• Introduction to Cisco StadiumVision Mobile SDK for Android, page 3-2

• Cisco StadiumVision Mobile and Android Developer Tools, page 3-2

• Download and Unpack the SDK, page 3-4

• Getting Started with the Android Demo App, page 3-5

– Compile the Demo App, page 3-5

– Customize the Demo App, page 3-6

– Embed the Cisco StadiumVision Mobile SDK in an Existing App, page 3-7

• How Cisco StadiumVision Mobile Fits into the Android Framework, page 3-12

• Cisco StadiumVision Mobile Methods and Functions for Android, page 3-15

• Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples,
page 3-21

– Customizing the Default Video Player, page 3-31

– Video Channels, page 3-32

– Data Channels, page 3-34

– Audio Channels, page 3-35

• EVS C-Cast Integration, page 3-36
3-1
co StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Introduction to Cisco StadiumVision Mobile SDK for Android
Introduction to Cisco StadiumVision Mobile SDK for Android
The Cisco StadiumVision Mobile Android SDK contains the following components bundled together:

• A set of static libraries, header files

• Demo app and SDK video player

• API documentation (Doxygen build)

The Cisco StadiumVision Mobile API uses Android and Java classes and method calls to access the
StadiumVision Mobile data distribution and video playback functionality within the StadiumVision
Mobile Android SDK library.

Table 3-1 describes the mobile operating system versions supported by the Cisco StadiumVision Mobile
SDK.

For additional information, refer to the Cisco StadiumVision Mobile Release Notes available from
Cisco.com at:

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html

Cisco StadiumVision Mobile and Android Developer Tools
Table 3-2 lists the various Android SDK build environment requirements.

Table 3-1 Mobile OS Support

OS

Google Android

2.3 4.0 4.1 4.2 4.3 4.4 5.0 5.1

Cisco StadiumVision Mobile SDK Release 2.1 No Yes Yes Yes Yes Yes Yes Yes

Cisco StadiumVision Mobile SDK Release 2.0 No Yes Yes Yes Yes Yes No No

Table 3-2 Build Environment Requirements

Tool Version Description URL

Mac or Windows PC — — —

Eclipse 3.7.2 or greater Eclipse "Classic" for Mac OSX (64-bit) https://eclipse.org/downloads/packa
ges/eclipse-classic-372/indigosr2

Android Developer Tools
(ADT)

Eclipse plug-in that provides a suite of
tools.

https://developer.android.com/sdk/i
nstalling/installing-adt.html

Android Stand-alone SDK
Tools

Basic tools for app development for use
without an Integrated Development
Environment (IDE).

https://developer.android.com/sdk/i
ndex.html#Other
3-2
Cisco StadiumVision Mobile SDK Programmer’s Guide

https://eclipse.org/downloads/packages/eclipse-classic-372/indigosr2
http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile and Android Developer Tools
Note There are many different methods and platforms to use when developing and testing apps for Google
Android. Android Studio is an Integrated Development Environment (IDE) that is available, however
please note we have not tested using this tool. For additional IDE details and information, go to:

• https://developer.android.com/sdk/index.html

Requirements

• Download and install Eclipse:

– Eclipse version 3.7.2 is available at:

https://eclipse.org/downloads/packages/eclipse-classic-372/indigosr2

Note Existing Eclipse installations require the Eclipse JDT plug-in (included in most Eclipse IDE packages)
and JDK 6 (JRE alone is not sufficient). For the latest requirements, refer to:

https://developer.android.com/sdk/installing/installing-adt.html

• Download and install the Android Developer Tools (ADT) plug-in available at:

https://developer.android.com/sdk/installing/installing-adt.html

• Download and unpack/unzip the Android Stand-alone SDK Tools available at:

https://developer.android.com/sdk/installing/index.html

• Set up the ADT tools plug-in by completing the following:

– Launch Eclipse and when prompted select a folder to use as your workspace.

– In Eclipse select Help > Install New Software. Click Add (top-right corner) and enter "ADT
Plugin" in the name field and the following URL for the location:
https://dl-ssl.google.com/android/eclipse/. Finish the installation, accept the license
agreements, then restart Eclipse.

– In the "Welcome to Android Development" window that appears, select Use existing SDKs.
Navigate to and select the location of the Android Stand-alone SDK Tools folder. Click Next.

– From the Window drop-down menu, launch the Android SDK Manager. Open the applicable
Android folder and check the SDK Platform box. Deselect everything else, then install the
selected package as shown in Figure 3-1:

Note Cisco StadiumVision Mobile supports Android 4.0 (API 14) and higher.
3-3
Cisco StadiumVision Mobile SDK Programmer’s Guide

https://developer.android.com/sdk/index.html
https://eclipse.org/downloads/packages/eclipse-classic-372/indigosr2
https://developer.android.com/sdk/installing/installing-adt.html
https://developer.android.com/sdk/installing/installing-adt.html
https://developer.android.com/sdk/installing/index.html

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Download and Unpack the SDK
Figure 3-1 Selecting the SDK Platform Box

• Latest Cisco StadiumVision Mobile SDK tar.bz2 file, contact your Cisco account team for details as
to how to become part of the Cisco StadiumVision Mobile SDK partner program.

Download and Unpack the SDK

Step 1 Download StadiumVisionMobileSample-Android-VERSION.tar.bz2. If you do not have this file,
contact your Cisco account team for details as to how to become part of the Cisco StadiumVision Mobile
SDK partner program.

Step 2 Extract the downloaded package into a directory. Table 3-3 lists the extracted content and includes a
brief description.

Table 3-3 Cisco StadiumVision Mobile SDK File Content

Contents Description

AndroidManifest.xml File that presents information about your app to the Google Android
system.

assets/ Contains files that can be included in the package.

build.xml File used by ant or Eclipse programs to build an executable.

clean.stream Sample stream for the stream sender.

html/ Contains Doxygen API documentation that is accessible by opening the
index.html file in a web browser.

libs/ Contains library files used by the SDK.

Manifest Declares app components, file must be located at the root of the project
directory.

obj/ Contains temporary files (object or other) used to create the binary
package.

proguard-project.txt File that is automatically generated by Android tools to enable Proguard.
3-4
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
Note The clean.stream file that comes bundled with the SDK contains just one video channel. To provide app
developers with additional ways to test multiple channels, an additional set of clean.stream files is
available. For additional information refer to “Testing Your Cisco StadiumVision Mobile App” section
on page 1-8.

Step 3 Open the API documentation available in the Doxygen build that is downloaded with the SDK. Navigate
to the extracted folder contents, open the html folder > double-click index.html to launch the
documentation in a web browser.

Getting Started with the Android Demo App
The Cisco StadiumVision Mobile SDK provided to app developers includes the source code for an
Android demo app. The purpose of the demo app is to demonstrate what is possible and to enable a new
app developer to quickly get a working app up and running.

Note Before creating a new app, review the Cisco StadiumVision Mobile SDK Best Practices, page 1-9.

Compile the Demo App

Step 1 Import the demo app project into Eclipse as follows:

a. In Eclipse go to File > Import.

b. Go to General > Existing Projects into Workspace, then select Next.

c. Click Browse to Select the root directory and navigate to the folder where you unpacked the Cisco
StadiumVision Mobile SDK, then click Finish.

d. Restart Eclipse from File > Restart.

Step 2 Right-click CiscoStadiumVisionMobile in the left Package Explorer window, then select Android
Tools > Export Signed Application Package.

proguard.cfg File used by the Proguard tool to optimize and objuscate the SDK code.

proguard.cfg.save File generated by the Proguard program before it obfuscates the SDK
code for a new release.

project.properties Contains information such as build platform target and library
dependencies.

README File that contains information to get started.

res/ Contains drawable objects, animation, layout, string, color, style that the
SDK depends on.

src/ Contains the source for SDK components.

Table 3-3 Cisco StadiumVision Mobile SDK File Content (continued)

Contents Description
3-5
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
Note If you cannot complete the export due to build errors, check the Android path. Right-click on the
Cisco StadiumVisionMobileSample in the left panel, select Build Path > Configure Build
Path. In the Properties window that appears, select Android on the left, then select the check
box next to the latest Target Name (for example Android 4.4.2) under Project Build Target. Click
Apply, then OK. Restart Eclipse from File > Restart.

Step 3 Click Next when the Project Checks window appears.

Step 4 Select Create new keystore, then browse to a folder where you wish to store the key store file. Click
Next.

Step 5 Fill in the Key Creation form (there are no right or wrong answers). Click Next.

Step 6 Browse to the folder where you wish to place the apk file, then click Finish.

Step 7 Download the apk file to your Android device by placing it on a web server, emailing it, SD card, or
USB flash key, etc.

Step 8 Install the apk on your device.

Customize the Demo App
Here are some of the first items you may want to customize in the demo app:

• Change the text for the app icon:
In the file "res/values/strings.xml" change "SVM Demo" to "My SVM App"

• Change the name space so that your custom app can be installed side-by-side with the out-of-the-box
demo app:
Edit the file "AndroidManifest.xml"

– Change "package="com.cisco.sv"" to "package="com.cisco.svm.foo""

– Change "android:name="com.cisco.svm.app.StadiumVisionMobile"" to
"android:name="com.cisco.svm.foo""

Note The package name must start with "com" (excluding the quotes).

• Search and replace "com.cisco.sv.R" with "com.cisco.svm.foo.R" in all *.java files in src/app/demo.
3-6
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
Embed the Cisco StadiumVision Mobile SDK in an Existing App

Integration Checklist

The following table outlines the integration steps for embedding Cisco StadiumVision Mobile SDK into
an existing app:

Android Permissions

The following Android permissions are needed by the StadiumVision Mobile SDK. Each permission is
set in the "AndroidManifest.xml" file.

<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE" />

SDK Java Libraries

Each Java JAR library needs to be included in the Android app’s "libs" folder, as shown in the following
example.

• Cisco StadiumVision Mobile Android SDK

• Apache HTTP Client 4.1

• Jackson JSON 1.8.1

./libs/StadiumVisionMobile.jar

./libs/httpclient-4.1.1.jar

./libs/httpcore-4.1.jar

./libs/httpmime-4.1.1.jar

./libs/jackson-core-lgpl-1.8.1.jar

./libs/jackson-mapper-lgpl-1.8.1.jar

SDK Native Libraries

Each library needs to be included in the Android app’s "libs/armeabi" folder.

./libs/armeabi/libvoAndroidVR_S23_OSMP.so

./libs/armeabi/libvoAudioMCDec_OSMP.so

./libs/armeabi/libvoIOMXDec_jb_OSMP.so

./libs/armeabi/libvoOSSource_OSMP.so

./libs/armeabi/libvompEngn_OSMP.so

Area Action or Verification

Supported Android OS Version Set the app’s Android version target to v4.0 (API 14) or above.

Android App Permissions Add the required permissions to "AndroidManifest.xml."

Copy Config Files Add the config files to the app’s "assets" folder.

Copy Libraries Add the Java and native libraries to the app’s "libs" folder.

Set a Video "SurfaceView" Add a "SurfaceView" to the player Activity’s layout XML file.

Life-Cycle Notifications Forward life-cycle notifications to the StadiumVision Mobile SDK.

Android Project Build Paths Set the project build path to include the Jar files in "./libs/".
3-7
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
./libs/armeabi/libvoAACDec_OSMP.so

./libs/armeabi/libvoAndroidVR_S40_OSMP.so

./libs/armeabi/libvoH264Dec_OSMP.so

./libs/armeabi/libvoIOMXDec_kk_OSMP.so

./libs/armeabi/libvoPushPDMgr_OSMP.so

./libs/armeabi/libvoAMediaCodec_OSMP.so

./libs/armeabi/libvoAndroidVR_S41_OSMP.so

./libs/armeabi/libvoH264Dec_v7_OSMP.so

./libs/armeabi/libvoLogSys.so

./libs/armeabi/libvoTsParser_OSMP.so

./libs/armeabi/libvoAndroidVR_S16_OSMP.so

./libs/armeabi/libvoAndroidVR_S43_OSMP.so

./libs/armeabi/libvoH265Dec_v7_OSMP.so

./libs/armeabi/libvoMMCCRRS_OSMP.so

./libs/armeabi/libvoVersion_OSMP.so

./libs/armeabi/libvoAndroidVR_S20_OSMP.so

./libs/armeabi/libvoAndroidVR_S50_OSMP.so

./libs/armeabi/libvoIOMXDec_L_OSMP.so

./libs/armeabi/libvoMMCCRRS_v7_OSMP.so

./libs/armeabi/libvoVidDec_OSMP.so

./libs/armeabi/libvoAndroidVR_S22_OSMP.so

./libs/armeabi/libvoAudioFR_OSMP.so

./libs/armeabi/libvoIOMXDec_ics_OSMP.so

./libs/armeabi/libvoOSEng_OSMP.so

./libs/armeabi/libvodl.so

Android Project Classpath

To add Java JAR files to your Eclipse project, complete the following steps:

Step 1 Right-click your project in Eclipse.

Step 2 Select Properties > Java Build Properties.

Step 3 Select Add JARs.

Step 4 Add each of the Java JAR files listed in Adding Java JAR Files in Eclipse14.

Figure 3-2 Adding Java JAR Files in Eclipse

Your "classpath" file should look like the following example:

<?xml version="1.0" encoding="UTF-8"?>
<classpath>

<classpathentry kind="src" path="src"/>
<classpathentry kind="src" path="gen"/>
3-8
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
<classpathentry kind="con" path="com.android.ide.eclipse.adt.ANDROID_FRAMEWORK"/>
<classpathentry kind="lib" path="libs/httpclient-4.1.1.jar"/>
<classpathentry kind="lib" path="libs/httpcore-4.1.jar"/>
<classpathentry kind="lib" path="libs/httpmime-4.1.1.jar"/>
<classpathentry kind="lib" path="libs/jackson-core-lgpl-1.8.1.jar"/>
<classpathentry kind="lib" path="libs/jackson-mapper-lgpl-1.8.1.jar"/>
<classpathentry kind="lib" path="libs/StadiumVisionMobile.jar"/>
<classpathentry kind="output" path="bin"/>

</classpath>

App Obfuscation Using ProGuard

If you choose to obfuscate your application with ProGuard, consider the following points:

• Use the latest version of ProGuard (which is version 5.2 as of April, 2015)

• If a crash takes place that you would like Cisco to analyze, please run retrace.jar on the stack trace
output with your map file before sending us the un-winded stack trace file.

• Specify our libraries as input jars with "-libraryjars". See the example below and remember to
modify the paths as needed:

-libraryjars ./libs/httpclient-4.1.1.jar
-libraryjars ./libs/httpcore-4.1.jar
-libraryjars ./libs/httpmime-4.1.1.jar
-libraryjars ./libs/jackson-core-lgpl-1.8.1.jar
-libraryjars ./libs/jackson-mapper-lgpl-1.8.1.jar
-libraryjars ./libs/StadiumVisionMobile.jar
-libraryjars ./libs/StadiumVisionMobileSender.jar

If you extend or implement any of our classes or interfaces please specify that in the config file, as shown
in the following example:

-keep public class * extends com.cisco.svm.data.ISVMDataObserver
Specify the following in the configuration file, to work with our JARS, as it prevents the
StadiumVision Mobile JARS from being obfuscated:
-keep public class com.xxxxxx.vome.*
 public protected private *;

}

 -keep public class com.cisco.** { public protected private *; }

#for the Jackson library
-keepattributes *Annotation*,EnclosingMethod
-keepnames class org.codehaus.jackson.** { *; }

If ProGuard complains about "joda.org.time" and you have included the library as well as the
configuration options above, you can ignore the warnings with the "–ignorewarnings" flag.

Cisco recommends not obfuscating all the classes that implement or extend the basic Android classes.
The following ProGuard configuration is not meant to be a complete configuration, but rather a
minimum:

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;
3-9
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
}
-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet);

}
-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);

}
-keepclassmembers class * extends android.app.Activity {

 public void *(android.view.View);
}
-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);

}
-keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;

}

Channel ListView Activity Example

The following example illustrates the following actions:

• Periodically obtains the list of available video channels

• Updates the Activity’s ListView with the channel list

• Plays the video channel selected in the ListView

// set the click listener for the list view
channelListView.setOnItemClickListener(new OnItemClickListener() {
public void onItemClick(AdapterView<?> parentView, View clickedView,
 int position, long id) {
 // get the selected video channel
 SVMChannel selectedChannel = videoChannels[position];

 Log.d(TAG, "Selected Video Channel = '" + selectedChannel.name);
 // get a reference the StadiumVision Mobile SDK
 StadiumVisionMobile svm = StadiumVisionMobile.getInstance();
 // play the selected video channel with custom video player
 Intent intent = new Intent();
 intent.putExtra("channel", selectedChannel);
 intent.setClass(MyActivity.this, MyVideoPlayer.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(intent);
 }
});
3-10
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Getting Started with the Android Demo App
Configuration Files

There are three configuration files that must be bundled with any Android app using the StadiumVision
Mobile SDK (shown in Table 3-4).

An example set of fields in the cisco_svm.cfg file is shown below. These fields must match the channel
settings in the Cisco "Streaming Server" for the channels to be accessible by the application.

{
 "license": {
 "venueName": "Stadium-A",
 "contentOwner": "Multi-Tenant Team-B",
 "appDeveloper": "Vendor-C"
 }
}

Wi-Fi AP Info Configuration (Optional)

The cisco_svm.cfg config file can optionally include an array of Wi-Fi AP information that will be used
by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example Wi-Fi AP
info entry in the cisco_svm.cfg config file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }

Table 3-4 Configuration Files

Config File Name Description

"cisco_svm.cfg" StadiumVision Mobile SDK configuration file that contains the "Field-of-Use" parameters and
some optional Wi-Fi network debugging information. The three "field-of-use" properties in the
"cisco_svm.cfg" configuration file that need to be configured for each StadiumVision Mobile
application are:

• Venue Name

• Content Owner

• App Developer

"vompPlay.cfg" Video decoder config file that contains the tuned decoding parameters. These settings should never
be changed. Any changes could result in poor video or audio playback.

"voVidDec.dat" Video decoder license file.
3-11
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 How Cisco StadiumVision Mobile Fits into the Android Framework
How Cisco StadiumVision Mobile Fits into the Android Framework
This section describes how SVM fits into the Android Framework, and contains the following sections:

• Android API Class Overview, page 3-12

• Android OS Activity Overview, page 3-12

• Client Application Integration Overview, page 3-14

• Customer Application Roles, page 3-14

Android API Class Overview
Figure 3-3 describes the three main Android API classes used in Cisco StadiumVision Mobile. The
top-level StadiumVisionMobile class acts as a custom Android application context. An application
context is a global structure created within the current process. It is tied to the lifetime of the process
rather than the current component.

Each SDK API method is called using the StadiumVisionMobile class. The SVMVideoPlayerActivity
class is a customizable stand-alone video player.

Figure 3-3 StadiumVision Mobile Class

Android OS Activity Overview

Figure 3-4 depicts the Android OS with regard to Activities. An Activity represents both the screen
layout and controller code. A new Activity is launched by sending an Intent to the Android OS. An intent
is a message to Android OS to launch a particular activity. Extra parameters contained in an Intent and
are passed to an Activity. The back button is a hard device button used to generically display the previous
Activity, and moves back down the Activity stack.
3-12
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 How Cisco StadiumVision Mobile Fits into the Android Framework
Figure 3-4 Android Activity Overview

Figure 3-5 depicts the Activity inheritance between the Android OS, Cisco StadiumVision Mobile, and
the client application.

Figure 3-5 Android Video Player Activity Inheritance
3-13
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 How Cisco StadiumVision Mobile Fits into the Android Framework
Client Application Integration Overview

Figure 3-6 Cisco StadiumVision Mobile Integration Overview

Customer Application Roles

Figure 3-7 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlay
3-14
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile Methods and Functions for Android
Figure 3-7 Customer Application Responsibilities

Cisco StadiumVision Mobile Methods and Functions for Android

Cisco StadiumVision Mobile Android API Summary
Table 3-5 summarizes the Android API library. Detailed API documentation is available in the Doxygen
build that is downloaded with the SDK. Navigate to the htm1 folder and double-click index.html to
launch the documentation in a web browser.

Table 3-5 Cisco StadiumVision Mobile Android API Summary

Return Type API Method Name API Method Description

ArrayList<String> getAllowedReporterUrls Gets a list of the Reporter stats upload URLs associated
with Streamer servers (duplicate entries are removed).

ArrayList<String> getLogComponentArrayList Gets the array list of available components which can
have their component logging level set individually.

ArrayList<String> getLogLevelArrayList Gets the array list of available logging levels that can be
applied to any component.

ArrayList<SVMChannel> getAudioChannelArrayList Gets the array list of available audio channels.

ArrayList<SVMChannel> getDataChannelArrayList Gets the array list of available data channels.

ArrayList<SVMChannel> getFileChannelArrayList Gets the array list of available file channels.

ArrayList<SVMChannel> getVideoChannelArrayList Get the array list of available video channels.
3-15
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile Methods and Functions for Android
ArrayList<SVMStreamer> getStreamerArrayList Gets the array list of Cisco SVM Streamer servers
detected by the SDK.

HashMap<String,Object> getFileDistributionTable Gets a HashMap of the current SDK file distribution
table.

HashMap<String,String> getStats Gets a HashMap of the current SDK stats as a hash
name/value.

JSONObject getConfig Gets the current SDK configuration as a 'JSONObject'
object.

SharedPreferences getSharedPreferences Gets the Android SharedPreferences object that can be
used to save arbitrary, app-specific preference settings
that survives app restarts.

String[] getLogComponentArray Gets the array of available components which can have
the component logging level set individually.

String[] getLogLevelArray Gets the array of the available SVM SDK logging levels
that can be applied to any component.

String getAppSessionUUID Gets the app session UUID that is generated by the SVM
SDK. This UUID uniquely identifies each time the SDK
is started and is used for consistent statistics collection
and reporting.

String getDeviceUUID Gets the device UUID generated by the SVM SDK and is
saved in the app’s shared preferences.

Note Android does not provide a consistent and
reliable device UUID across all of the Android
OS versions supported by the SVM SDK, so a
generated device UUID is used instead.

String getFileDistributionLocalFilename Gets the local filesystem filename for any object given its
URI and the file channel.

String getLocalIpAddress Gets the IP address of the local device.

String getSessionUUID Gets the unique SVM identifier for the session.

String getVideoSessionUUID Gets the unique SVM identifier for the video session.

String sdkVersion Property that contains the SVM SDK version string.

SVMBatteryInfo getBatteryInfo Gets the current battery info for the device. This
information gets collected in the statistics information
that is uploaded to the Reporter server (if stats collection
is enabled).

SVMChannel[] getAudioChannelArray Gets the array of available audio channels.

SVMChannel[] getDataChannelArray Gets the array of available data channels.

SVMChannel[] getFileChannelArray Gets the array of available file channels.

SVMChannel[] getVideoChannelArray Gets the array of available video channels.

SVMChannelManager getChannelManager Gets the channel manager.

SVMInventoryManager getInventoryManager Gets the internal inventory manager.

Table 3-5 Cisco StadiumVision Mobile Android API Summary (continued)

Return Type API Method Name API Method Description
3-16
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile Methods and Functions for Android
SVMLocation getCurrentLocation Gets the current location.

SVMServiceState getServiceState Gets the service state.

SVMStatsManagerStats getStatsManagerStats Gets the current stats manager information.

SVMStatus addDataChannelObserver Registers an observer class to receive data for a particular
channel.

SVMStatus addFileChannelObserver Registers an observer class to receive data for a particular
file channel.

SVMStatus allowAllStreamers Allows all Streamers to be processed by the SDK.

SVMStatus allowStreamers Allows only the specified Streamers in the list to be
processed by the SDK.

SVMStatus disableQualityMonitoring Disables quality monitoring within the SDK.

SVMStatus disableStatsCollection Disables the SVM SDK from performing statistics
collection and thereby disables the uploading of the
statistics information to the Reporter server.

SVMStatus enableQualityMonitoring Enables quality monitoring within the SDK.

SVMStatus enableStatsCollection Enables the SVM SDK from performing statistics
collection and uploading to the Reporter server.

SVMStatus removeDataChannelObserver Unregisters an observer class from receiving data for a
particular data channel.

SVMStatus removeFileChannelObserver Unregisters an observer class from receiving data for a
particular file channel.

SVMStatus setConfig Sets the SVM SDK configuration at run-time using a
populated 'JSONObject' object. This method overrides
any configuration properties set with the 'cisco_svm.cfg'
configuration file.

SVMStatus setConfigWithString Sets the SVM SDK configuration at run-time using a
JSON-formatted 'String' object. This method overrides
any configuration properties set with the 'cisco_svm.cfg'
configuration file.

SVMStatus setLogLevel Sets the global logging level for the entire SVM SDK,
with all internal components getting their logging level
set to the same level.

SVMStatus shutdown Shuts down the SVM SDK.

SVMStatus start Starts the SVM SDK and any required SVM background
threads and component managers.

SVMStreamer[] getStreamerArray Gets the list of Cisco SVM Streamer servers detected by
the SDK.

SVMWifiInfo getWifiInfo Gets the current Wi-Fi network connection information.
This information gets collected in the statistics
information that is uploaded to the Reporter server.

Table 3-5 Cisco StadiumVision Mobile Android API Summary (continued)

Return Type API Method Name API Method Description
3-17
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile Methods and Functions for Android
void displayMessage Convenience method displays the given string as an
Android "toast" message that overlays anything currently
on the device screen.

void killAppProcess Kills the entire Android application.

void onCreate Calls on application startup since this class extends the
Android 'Application' class.

Note It is required by the customer app to add the
'com.cisco.svm.app.StadiumVisionMobile' class
as the global app context. This guarantees that
the SVM framework has a valid 'Context' that is
not tied to a client application Activity.

void onData Implemented by the customer app and is used as a
callback from the SVM SDK. Each callback from the
SDK to the customer app provides a received data
message on the given data channel, delivered as a byte
array.

void onDestroy Destroys an activity.

void onPause Informs the SVM SDK when a client app Activity has
stopped. Forwarding each client app Activity’s
"onPause()" life-cycle event allows the SVM SDK to
declare the client Android app as "active" and potentially
restart all of the internal component managers and
threads that use the device’s CPU and networking
resources.

void onResume Informs the SVM SDK when a client app has started.
Forwarding each client app Activity’s "onResume()"
life-cycle event allows the SVM SDK to declare the
client Android app as "inactive" and to shutdown all CPU
and networking resources used by the SVM SDK.

void setInactivityTimeoutMs Sets the inactivity timer timeout threshold used by the
StadiumVision Mobile SDK to determine when the client
Android app has "stopped".

Table 3-5 Cisco StadiumVision Mobile Android API Summary (continued)

Return Type API Method Name API Method Description
3-18
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile Methods and Functions for Android
Return Status Object

Each API call returns an ‘SVMStatus’ object whenever applicable. Table 3-6 lists the SVMStatus object
fields.

Table 3-7 lists the hash keys and stats description for the getStats API.

Table 3-6 SVMStatus Object

Type BOOL String

Property ok error

Description

Boolean indicating whether
the API call was successful or
not.

If the API call was not successful (ok =false), this string
describes the error.

Example Usage

// make an api call
SVMStatus status = StadiumVisionMobile.start();
// if an error occurred
if (status.ok == false) {
// display the error description
Log.e(TAG, "Error occurred: " + status.error);

Table 3-7 getStats API Hash Keys and Description

Stats Hash Key Description

announcement_session_id Video session announcement ID.

announcement_session_title Session announcement name.

announcementsMalformed Number of malformed channel announcements received.

announcementsNotAllowed Number of received announcements not allowed (source Streamer is not allowed).

announcementsReceived Number of received channel announcements.

channelsAdded Number of times that the channel listener added a channel to the channel.

channelsPruned Number of times that the channel listener pruned a channel from the channel list.

invalidJsonAnnouncements Number of received announcements with an invalid JSON body.

ipv4Announcements Number of IPv4 channel announcements received.

ipv6Announcements Number of IPv6 channel announcements received.

licenseMismatchAnnouncements Number of received announcements with mismatched license information.

listenerIgmpRestarts Number of announcement listener IGMP restarts.

num_compressed_announcements Number of compressed announcements received.

num_dropped_video_frames Total number of video frames dropped.

num_ts_discontinuities Total number of MPEG2-TS packet discontinuities.

session_link_indicator Health of the Wi-Fi network connection. Ranges from 0 (poor) to 10 (excellent).

session_uptime Length of time the session has been active (in seconds).

total_num_bytes_written Total number of video bytes played.

protection_windows Total number of protection windows sent.
3-19
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Cisco StadiumVision Mobile Methods and Functions for Android
Video Player Activity API Summary

The SVMVideoPlayerActivity class can be extended and customized. Table 3-8 lists the
SVMVideoPlayerActivity API methods and descriptions.

window_error Total number of protection windows with more packets per window than can be
supported by StadiumVision Mobile.

window_no_loss Total number of protection windows with no dropped video packets.

window_recovery_successes Total number of protection windows with recovered video packets.

window_recovery_failures Total number of protection windows that could not recover dropped packets. Recovery
failure occurs when the number of received repair packets is less than the number of
dropped video packets.

window_warning Total number of protection windows with more packets per window than the
recommended value.

versionMismatchAnnouncements Number of received announcements with a mismatched version number.

Table 3-7 getStats API Hash Keys and Description (continued)

Stats Hash Key Description

Table 3-8 Video Player Activity API Summary

Return Type API Method Name API Method Description

SVMStatus playLive Moves the video playback buffer pointer to the head ("live") offset position in the
video playback buffer.

This convenience method acts as a wrapper for the "seekAbsolute" API method;
making "playLive()" equivalent to "seekAbsolute(0)".

SVMStatus playVideoChannel Starts playback of a particular video channel, changing channels on subsequent calls.

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the current playback buffer
offset position. Should a duration be given that is larger than the size of the video
history buffer, the SVM SDK will rewind the video play-head as far as possible.

This convenience method acts as a wrapper for the "seekRelative" API method;
making the given "durationMs" value negative before calling "seekRelative". For
example, "rewindForDuration(20000)" is equivalent to "seekRelative(-20000)".

SVMStatus seekAbsolute Seeks the playback buffer pointer from the head ("live") offset position of the video
playback buffer.

• To play the most current live video pass in on offset of zero (0 ms).

• To play video in the past, a positive duration will be used as an offset for
rewinding back in time (relative to the "live" position).

SVMStatus seekRelative Seeks the playback buffer pointer relative to the current playback buffer offset
position.

SVMStatus setVideoSurfaceView Sets the Android UI "SurfaceView" where video frames will get rendered.

SVMStatus shutdown Stops video playback of the currently playing video channel by stopping the native
player, native decoder, and terminating this Android Activity.
3-20
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Adding Cisco StadiumVision Mobile Services to an Android
App—Code Structure and Samples

This section describes the SDK workflow, and contains the following sections:

• Start the SDK, page 3-21

• Notify Life-Cycle Activity, page 3-21

• Indicate StadiumVision Mobile Service: Up or Down, page 3-22

• Detect Mobile Device Connection, page 3-24

• Set the SDK Configuration at Run-Time, page 3-25

• Scalable File Distribution, page 3-25

• Get the SDK Configuration, page 3-26

• Set SDK Configuration using setConfigWithString API Method, page 3-27

• Get the Available Streamer Servers, page 3-28

• Obtain Additional Statistics, page 3-28

• Receive Video Player State Notifications, page 3-29

• Detect Video Player "Channel Inactive" Callback, page 3-30

Start the SDK

Start the StadiumVision Mobile SDK from the application’s main Android launch Activity, as shown in
the following example.

import com.cisco.svm.app.StadiumVisionMobile;

// app’s launch activity ‘onCreate’ notification
void onCreate() {

 // call the parent method
 super.onCreate();

 // start the StadiumVision Mobile SDK
 StadiumVisionMobile.start();
}

Notify Life-Cycle Activity

The client app needs to notify the StadiumVision Mobile SDK of it’s life-cycle notifications. This allows
the StadiumVision Mobile SDK to automatically shutdown and restart as needed. Each client Activity
needs to forward its life-cycle notifications, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

void onPause() {
 // notify the cisco sdk of the life-cycle event
 StadiumVisionMobile.onPause();
}

void onResume() {
 // notify the cisco sdk of the life-cycle event
 StadiumVisionMobile.onResume();
3-21
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Indicate StadiumVision Mobile Service: Up or Down

The Cisco StadiumVision Mobile SDK includes an indicator to the application indicating if the SVM
service is up or down. This indication should be used by the application to indicate to the user whether
the SVM service is available or not. Service is declared 'down' by the SDK when any of the following
are true:

• The SDK detects that the video quality is poor.

• The SDK detects that no valid, licensed channel are available.

• The mobile device’s Wi-Fi interface is disabled.

Poor video quality can occur when the user is receiving a weak Wi-Fi signal; causing data loss. There
are two different ways that the app can get the "Service State" from the SDK:

• Register to receive the "Service Up/Down" notifications.

• Fetch the current service state from the SDK on-demand.

When the app receives the "Service Down" notification, the SDK will supply a bitmap containing the
reasons why the service was declared down by the SDK. The reasons bitmap is given in Table 3-9.

Note For additional Service Down Notification details, refer to “Cisco StadiumVision Mobile SDK Best
Practices” section on page 1-9.

Receiving "Service Up/Down" Notifications

The following example shows how to register and handle the "Service Up/Down" notifications from the
SDK:

import com.cisco.svm.app.StadiumVisionMobile;
import com.cisco.svm.app.StadiumVisionMobile.SVMServiceState;

// define the service state broadcast receiver
private BroadcastReceiver serviceStateReceiver;

// create the service state broadcast receiver
serviceStateReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

Table 3-9 Service Down Notifications

Service Down Reason Constant

Poor video quality networking conditions
detected

StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_POOR_QUALITY

Wi-Fi connection is down StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_WIFI_DOWN

No valid SVM channels have been detected StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_NO_CHANNELS

SDK not running StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_SDK_NOT_RUNNING
3-22
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
 // get the intent extras
 Bundle bundle = intent.getExtras();

 // get the service state from the bundle
 SVMServiceState serviceState =
(SVMServiceState)bundle.get(StadiumVisionMobile.SVM_SERVICE_STATE_VALUE_TAG);

 // determine the service state
 if (serviceState == SVMServiceState.SVM_SERVICE_STATE_UP) {
 Log.i(TAG, "### SERVICE STATE: UP");
 } else if (serviceState == SVMServiceState.SVM_SERVICE_STATE_DOWN) {
 Log.i(TAG, "### SERVICE STATE: DOWN");

 // get the service state changed reasons bitmap
 int reasons =
bundle.getInt(StadiumVisionMobile.SVM_SERVICE_STATE_CHANGED_REASONS_TAG);

 // determine the reasons that the service state changed
 if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_SDK_NOT_RUNNING) != 0) {
 Log.i(TAG, "Reason for Service State Change: SDK NOT RUNNING");
 } else if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_WIFI_DOWN) != 0) {
 Log.i(TAG, "Reason for Service State Change: WIFI DOWN");
 } else if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_NO_CHANNELS) != 0) {
 Log.i(TAG, "Reason for Service State Change: NO CHANNELS AVAILABLE");
 } else if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_POOR_QUALITY) != 0) {
 Log.i(TAG, "Reason for Service State Change: POOR QUALITY");
 }
 }
 }
};

// register to receive the service state intents
IntentFilter serviceStateIntentFilter = new IntentFilter();
serviceStateIntentFilter.addAction(StadiumVisionMobile.SVM_SERVICE_STATE_CHANGED_INTENT_TA
G);
registerReceiver(serviceStateReceiver, serviceStateIntentFilter);

Getting the Current "Service Up/Down" State On-Demand

The "getServiceState" API method can be used to fetch the current service state from the SDK. The
following example show how to fetch the current service state from the SDK using the "getServiceState"
API call:

import com.cisco.svm.app.StadiumVisionMobile;
import com.cisco.svm.app.StadiumVisionMobile.SVMServiceState;

// get the current svm service state
SVMServiceState serviceState = StadiumVisionMobile.getServiceState();

// determine the current service state
if (serviceState == SVMServiceState.SVM_SERVICE_STATE_UP) {
 Log.i(TAG, "### SERVICE STATE: UP");
} else if (serviceState == SVMServiceState.SVM_SERVICE_STATE_DOWN) {
 Log.i(TAG, "### SERVICE STATE: DOWN");
}

3-23
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Detect Mobile Device Connection

Beginning in Cisco StadiumVision Mobile Release 2.0, the SDK provides a mechanism to detect whether
the mobile device is connected within the SVM-enabled venue or not.

There are two different ways that the Android app can get this "In-Venue Detection" state from the SDK:

• Register to receive the "In-Venue Detection" notifications.

• Fetch the current "In-Venue" state from the SDK on-demand.

Receiving "In-Venue Detection" Notifications

The following example shows how to register and handle the "Service Up/Down" notifications from the
SDK:

import com.cisco.svm.app.StadiumVisionMobile;

// define the 'in-venue status changed' broadcast receiver
private BroadcastReceiver inVenueReceiver;

// handle the venue connection changed event
venueConnectionReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // get the intent action
 String action = intent.getAction();

 // determine whether the device is inside or outside of the venue
 if (action.equals(StadiumVisionMobile.SVM_VENUE_CONNECTED_INTENT_TAG)) {
 Log.i(TAG, "##### App Received 'VENUE-CONNECTED' Notification");
 } else if (action.equals(StadiumVisionMobile.SVM_VENUE_DISCONNECTED_INTENT_TAG)) {
 Log.i(TAG, "##### App Received 'VENUE-DISCONNECTED' Notification");
 }
 }
};

// register to receive the venue connected / disconnected intents
IntentFilter inVenueIntentFilter = new IntentFilter();
inVenueIntentFilter.addAction(StadiumVisionMobile.SVM_VENUE_CONNECTED_INTENT_TAG);
inVenueIntentFilter.addAction(StadiumVisionMobile.SVM_VENUE_DISCONNECTED_INTENT_TAG);
registerReceiver(venueConnectionReceiver, inVenueIntentFilter);

Getting the Current "In-Venue" State On-Demand

The "isConnectedToVenue" API method can be used to fetch the current in-venue state from the SDK.
The following example shows how to fetch the current service state from the SDK using the
"isConnectedToVenue" API call:

import com.cisco.svm.app.StadiumVisionMobile;

// get whether the device is currently connected to the SVM licensed venue
boolean isConnectedToVenue = StadiumVisionMobile.isConnectedToVenue();

// log whether the device is currently connected to the SVM licensed venue
Log.i(TAG, "### Connected to the venue: " + (isConnectedToVenue ? "YES" : "NO"));
3-24
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Set the SDK Configuration at Run-Time

Previously, the Cisco StadiumVision Mobile SDK could only be configured by using a JSON-formatted
config file ("cisco_svm.cfg") bundled within the Android app. Starting with the 1.3 release, the
application can set the SDK configuration at run-time through an API method. This allows the
application to dynamically configure the SDK. For example, the application can fetch the SDK
configuration information from a network connection, and then pass that configuration to the SDK.

Two different methods are provided for setting the SDK configuration at run-time:

• "setConfig"

The signature of the "setConfig" API method is given below:

// configure the sdk using a JSON object containing the configuration settings
public static SVMStatus setConfig(JSONObject givenJsonConfig)

// configure the sdk using an nsdictionary containing the configuration settings

• "setConfigWithString"

The signature of the "setConfigWithString" API method is given below:

// configure the sdk using a json-formated string containing the configuration
settings
public static SVMStatus setConfigWithString(String jsonConfigStr)

The following example shows how to set the SDK configuration using the "setConfigWithString"
API method:

// create the json config string
String configString =
 @"{"
 " \"license\": {"
 " \"venueName\": \"MyVenueNameKey\","
 " \"contentOwner\": \"MyContentOwnerKey\","
 " \"appDeveloper\": \"MyAppDeveloperKey\""
 " }"
 "}";

Scalable File Distribution

Table 3-10 lists the Cisco StadiumVision Mobile scalable file distribution API.

Table 3-10 Scalable File Distribution and Service API Summary

API Return Type File Service API Method Name Method Description

NSArray* getFileChannelArrayList Gets a snapshot array of the currently available
file channels.

NSMutableDictionary* getFileDistributionTable Gets file distribution table details.

NSString* getFileDistributionLocalFilename Get local filesystem filename for any object given
its URI and the file channel.

NSString* getFileDistributionLocalFilename:forChannel Get local filesystem filename for any object given
its URI and the file channel.

NSString* getFileDistributionLocalFilename:forChannel
Name

Get local filesystem filename for any object given
its URI and the file channel name.
3-25
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Data Channels

Table 3-11 lists the Cisco StadiumVision Mobile data channel APIs.

Get the SDK Configuration

"getConfig" API Method

The signature of the "getConfig" API method is given below:

// get the current cisco sdk configuration
public static JSONObject getConfig()

The example below fetches the current configuration from the SDK, and then accesses the configuration
values in the configuration JSON object:

// get the sdk configuration dictionary
JSONObject configObj = StadiumVisionMobile.getConfig();

// get the license dictionary from the config dictionary

SVMStatus* addFileChannelObserver Registers an observer class to receive data for a
particular file channel.

SVMStatus* addFileChannelObserver:forChannel Registers an observer class to receive all file
updates for a particular file channel.

SVMStatus* addFileChannelObserver:forChannelName Registers an observer class to receive all file
updates for a particular file channel name.

SVMStatus* removeFileChannelObserver Unregisters an observer class from receiving file
for a particular file channel.

SVMStatus* removeFileChannelObserver:forChannel Unregisters an observer class from receiving any
file updates for a particular file channel.

SVMStatus* removeFileChannelObserver:forChannelName Unregisters an observer class from receiving any
file updates for a particular file channel name.

Table 3-10 Scalable File Distribution and Service API Summary (continued)

API Return Type File Service API Method Name Method Description

Table 3-11 Data Distribution and Service API Summary

API Return Type Data Service API Method Name Method Description

ArrayList<SVMChannel> getDataChannelArrayList Gets the array list of available data channels.

SVMChannel[] getDataChannelArray Gets the array of available data channels.

SVMStatus addDataChannelObserver Registers an observer class to receive data for a
particular channel.

SVMStatus removeDataChannelObserver Unregisters an observer class from receiving data for a
particular data channel.

void onData Implemented by the customer app and is used as a
callback from the SVM SDK. Each callback from the
SDK to the customer app provides a received data
message on the given data channel, delivered as a byte
array.
3-26
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
JSONObject licenseObj = null;
try {
 licenseObj = configObj.getJSONObject("license");
} catch (JSONException e) {
 e.printStackTrace();
}

// if the license object is valid
if (licenseObj != null) {
 // get the current set of configured license keys
 String venueName = licenseObj.getString("venueName");
 String contentOwner = licenseObj.getString("contentOwner");
 String appDeveloper = licenseObj.getString("appDeveloper");
}

The following example shows how to set the SDK configuration using the "setConfig" API method:

// create the config json object with the set of licensing keys
JSONObject jsonConfig = new JSONObject();
JSONObject licenseConfig = new JSONObject();
try {
 licenseConfig.put("venueName", "MyVenueNameKey");
 licenseConfig.put("contentOwner", "MyContentOwnerKey");
 licenseConfig.put("appDeveloper", "MyAppDeveloperKey");
 jsonConfig.put("license", licenseConfig);
} catch (JSONException e) {
 // log the error
 Log.e(TAG, "Error building the json config object");
 e.printStackTrace();
}

// update the cisco sdk configuration at run-time
StadiumVisionMobile.setConfig(jsonConfig);

Set SDK Configuration using setConfigWithString API Method

The signature of the "setConfigWithString" API method is given below:

// configure the sdk using a json-formated string containing the configuration settings
public static SVMStatus setConfigWithString(String jsonConfigStr)

The following example shows how to set the SDK configuration using the "setConfigWithString" API
method:

// create the cisco sdk json configuration string
String config =
 "{" +
 " \"license\": {" +
 " \"venueName\": \"MyVenueNameKey\"," +
 " \"contentOwner\": \"MyContentOwnerKey\"," +
 " \"appDeveloper\": \"MyAppDeveloperKey\"" +
 " }" +
 "}";

// update the cisco sdk configuration at run-time
StadiumVisionMobile.setConfigWithString(config);
3-27
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Get the Available Streamer Servers

The Android SDK detects the available Streamer servers and provides an API to get the list of servers.
A venue will typically only have a single Streamer server. The list is presented as an array of
"SVMStreamer" objects.

There are two different methods available that present the "SVMStreamer" objects in either a Java array
or ArrayList collection. The signatures for the two API methods are given below:

// get the detected streamer servers as a java array of "SVMStreamer" objects
public static SVMStreamer[] getStreamerArray()

// get the detected streamer servers as a java ArrayList of "SVMStreamer" objects
public static ArrayList<SVMStreamer> getStreamerArrayList()

Each "SVMStreamer" object contains the following properties listed in Table 3-12.

The following example shows how to get the list of StadiumVision Mobile Streamer servers detected by
the SDK:

// get the list of currently available streamer servers
ArrayList<SVMStreamer> streamerList = StadiumVisionMobile.getStreamerArrayList();

// iterate through the list of streamer objects
for (SVMStreamer nextStreamer: streamerList) {
 // get the properties of the next streamer server object
 String ipAddress = nextStreamer.getIpAddress();
 String statsUploadUrl = nextStreamer.getStatsUploadUrl();
 int statsSampleIntervalMs = nextStreamer.getStatsSampleIntervalMs();
 int statsPublishIntervalMs = nextStreamer.getStatsPublishIntervalMs();
 boolean isAllowed = nextStreamer.isAllowed();
}

Obtain Additional Statistics

In the Cisco StadiumVision Mobile Release 2.0 SDK, the existing "stats" API call returns the following
additional categories of stats information:

• Reporter upload stats

• Multicast channel announcement stats

• Licensing stats

The signature of the existing "getStats" API method is given below:

// get the current set of cisco sdk stats as a hashmap
public static HashMap<String, String> getStats()

Table 3-12 SVMStreamer Object Properties

SVMStreamer Property Type Description

ipAddress String IP address of the StadiumVision Mobile Streamer server.

isAllowed boolean Whether this StadiumVision Mobile Streamer server is allowed
by the user of this SDK.

statsPublishIntervalMs int SDK stats HTTP upload interval.

statsSampleIntervalMs int SDK stats sample interval.

statsUploadUrl String StadiumVision Mobile Reporter stats upload http url.
3-28
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Note For a detailed table of the hash keys and stats description for the getStats API refer to Table 3-7.

Table 3-13 details the StatsManager dictionary keys and descriptions.

Receive Video Player State Notifications

The 1.3 SDK generates broadcast Intent notifications for each of the video player state transitions (listed
in Table 3-14). The application can listen to these notifications and take action based on the video
player’s state transitions.

The following example shows how to subscribe to receive the video player Intent broadcast messages,
and then parse the messages for the (1) channel name and (2) video player state:

// create the channel state change broadcast receiver
channelStateReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // get the intent action
 String action = intent.getAction();

 // get the intent extras
 Bundle bundle = intent.getExtras();

 // determine the broadcast intent type
 if (action.equals(StadiumVisionMobile.SVM_CHANNEL_STATE_CHANGED_INTENT_TAG)) {
 // get the updated channel name and state info
 String channelName =
(String)bundle.get(StadiumVisionMobile.SVM_CHANNEL_NAME_VALUE_TAG);
 String channelState =
(String)bundle.get(StadiumVisionMobile.SVM_CHANNEL_STATE_VALUE_TAG);

Table 3-13 StatsManager Dictionary Keys

Dictionary Key Description

statsUploadAttempts Number of Reporter stats upload attempts.

statsUploadErrors Number of Reporter stat manager errors other than upload issues (for
example, stat generation failures).

statsUploadFailures Number of Reporter stats upload failures.

statsUploadRejects Number of Reporter stats delivered but rejected.

statsUploadSuccesses Number of Reporter stats upload successes.

Table 3-14 Video Player State Notification

Video Player State Notification Description

StadiumVisionMobile.SVM_VIDEO_CLOSED_STATE Occurs when the video player closes the video channel session.

StadiumVisionMobile.SVM_VIDEO_DESTROYED_STATE Occurs when the video player is terminated and destroyed.

StadiumVisionMobile.SVM_VIDEO_PAUSED_STATE Occurs when the video player pauses video playback.

StadiumVisionMobile.SVM_VIDEO_PLAYING_STATE Occurs when the video player starts playing the video channel.

StadiumVisionMobile.SVM_VIDEO_RESTARTING_STATE Occurs when the video player restarts video playback.

StadiumVisionMobile.SVM_VIDEO_STOPPED_STATE Occurs when the video player stops video playback.
3-29
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples

 // determine the channel state
 if (channelState.equals(StadiumVisionMobile.SVM_VIDEO_PLAYING_STATE) == true)
{
 // channel is now playing
 }
 }
 }
};

// create the intent filter
IntentFilter channelStateReceiverIntentFilter = new IntentFilter();
channelStateReceiverIntentFilter.addAction(StadiumVisionMobile.SVM_CHANNEL_STATE_CHANGED_I
NTENT_TAG);

// register the intent filter
context.registerReceiver(channelStateReceiver, channelStateReceiverIntentFilter);

Detect Video Player "Channel Inactive" Callback

To detect that a currently playing video channel has become invalid (due to Streamer server admin
changes), the SVM video player ("SVMVideoPlayerActivity") provides a callback to tell the video
player sub-class (ie: "MyVideoPlayerActivity") that the currently playing channel is no longer valid.

When a channel becomes invalid, playback of the video channel is automatically stopped.

To receive these callbacks, the "onCurrentChannelInvalid" method must be overridden by the
‘SVMVideoPlayerActivity’ sub-class (ie: "MyVideoPlayerActivity"). The following example shows the
method signature and implementation of this overridden callback method:

@Override
protected void onCurrentChannelInvalid() {
 // call the parent method
 super.onCurrentChannelInvalid();

 /*
 * This "MyVideoPlayerActivity" implements the following app-specific
 * behavior when receiving the 'onCurrentChannelInvalid' callback
 * from the Cisco SVM SDK
 *
 * 1) Stop video player
 * 2) Display a toast message describing why video playback was stopped
 * 3) Dismiss the video player Activity
 */

 // shutdown video playback
 shutdown();

 // display a notification that the channel is no longer valid
 Toast.makeText(this, "\nChannel is no longer valid and the video player has been
stopped\n", Toast.LENGTH_LONG).show();

 // exit this video player activity now
 thisActivity.finish();
}

3-30
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Customizing the Default Video Player
This section describes how to customize the default video player. The default Cisco video player has the
following features:

• Implemented as a separate Android "Activity."

• Supports fullscreen and partial-screen video views.

• Renders video frames using an Android "SurfaceView."

• Customizable by extending the "SVMVideoPlayerActivity" class.

Figure 3-8 Default Cisco Video Player

Figure 3-9 SVMVideoPlayerActivity API

Cisco Demo Video Player

The Cisco demo video player:

• Implemented as "MyVideoPlayerActivity."

• Extends the "SVMVideoPlayerActivity" class.

• Handles all video overlays and gestures.

• Uses standard Android XML layout files ("layout/player.xml").

The video player’s XML layout file defines:

• The "SurfaceView" video rendering area.

• Any transparent video overlays.

• Play/Pause/Rewind button graphic files.

• Animations used to show/hide the transport controller.
3-31
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
The customized video play extends the "SVMVideoPlayerActivity" base class, as shown below:

import com.cisco.sv.media.SVMVideoPlayerActivity;

public class MyVideoPlayer extends SVMVideoPlayerActivity {
}

You need to register the new custom Activity in "AndroidManifest.xml", as shown below:

<activity android:label="@string/app_name"
 android:name="com.company.MyVideoPlayer"
 android:screenOrientation="landscape"
 android:configChanges="orientation|keyboardHidden"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
</activity>

Video Channels
This section describes the Cisco StadiumVision Mobile SDK video channels and contains the following
sections:

• Getting the Video Channel List, page 3-32

• Presenting the Video Channel List, page 3-32

• Playing a Video Channel, page 3-33

• Seeking Within the Video Buffer, page 3-33

• Setting the Video Dimensions, page 3-33

Getting the Video Channel List

The StadiumVision Mobile SDK dynamically receives all of the available channels (via Wi-Fi
multicast). The client application gets an array of channel objects (SVMChannel[]) through the
"getVideoChannelArray" API call, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

// get the list of available video channels
SVMChannel[] channels = StadiumVisionMobile.getVideoChannelArray();

// display some channel information
Log.d(TAG, "Channel Name = " + channels[0].name);
Log.d(TAG, "Channel Bandwidth = " + channels[0].bandwidthKbps);
Log.d(TAG, "Channel Body Text = " + channels[0].bodyText);

Presenting the Video Channel List

Each "SVMChannel" video channel object contains all of the information needed to display the channel
list to the user. The SVMChannelObject properties and descriptions are shown in Table 3-15.

Table 3-15 SVMChannel Object Properties

SVMChannel Property Property Description

appDeveloper Name of the application developer.

bandwidthKbps Data bandwidth consumed by the channel (in kbps).
3-32
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Playing a Video Channel

The following example shows playing a video channel, and performs the following actions:

• Selects a channel from the locally saved channel list.

• Starts video playback of the channel by launching the custom video player Activity
("MyVideoPlayer").

Note The "SVMChannel" object is parcelable (instances can be written to and restored from a parcel).

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in device RAM. The following example shows jumping
backwards 20 seconds in the video buffer (instant replay):

public class MyVideoPlayerActivity extends SVMVideoPlayerActivity {

 // seek backwards 20 seconds in the video buffer
 super.seekRelative(-20000);
}

The following example shows jumping back to the top of the video buffer ("live" video playback):

public class MyVideoPlayerActivity extends SVMVideoPlayerActivity {

 // seek to the top of the video buffer (0 ms offset)
 super.seekAbsolute(0);
}

Setting the Video Dimensions

The video region is rendered within a SurfaceView. The video region is configured using standard
Android layout XML files. The video region can be set to full screen or to specific pixel dimensions.

Fullscreen Video Layout

The XML layout file below shows how to configure the video ‘SurfaceView’ to fill the entire screen, as
shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

bodyText Complete text description of the video channel.

channelType Type of the channel.

contentOwner Name of the content owner.

name Name of the channel.

sessionNum Session number of the channel.

venueName Name of the venue.

Table 3-15 SVMChannel Object Properties (continued)

SVMChannel Property Property Description
3-33
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/black">

 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_centerInParent="true">
 </SurfaceView>

</RelativeLayout>

Partial-Screen Video Layout

The XML layout file below shows how to configure the video ‘SurfaceView’ to specific pixel region, as
shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/black">

 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width="320px"
 android:layout_height="240px"
 android:layout_centerInParent="true">
 </SurfaceView>

</RelativeLayout>

Data Channels
This section describes the Cisco StadiumVision Mobile SDK data channels and contains the following
sections:

• Getting the Data Channel List, page 3-34

• Observing a Data Channel, page 3-35

Getting the Data Channel List

The StadiumVision Mobile SDK dynamically receives all of the available data channels (via Wi-Fi
multicast). The client application gets an array of channel objects (SVMChannel[]) through the
"getDataChannelArray" API call, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

// get the list of available data channels
SVMChannel[] channels = StadiumVisionMobile.getDataChannelArray();

// display some channel information
Log.d(TAG, "Channel Name = " + channels[0].name);
Log.d(TAG, "Channel Bandwidth = " + channels[0].bandwidthKbps);
Log.d(TAG, "Channel Body Text = " + channels[0].bodyText);
3-34
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
Observing a Data Channel

Any data channel can be observed by registering a class to receive callbacks for all data received on that
channel. The registered class needs to implement the "ISVMDataObserver" interface, as shown in the
following example:

import com.cisco.svm.data.ISVMDataObserver;

public class MyDataViewerActivity extends Activity implements ISVMDataObserver {
 ...
}

The "onData" method is called to push the received data to the registered class, as shown in the following
example:

public void onData(String channelName, byte[] data) {
 // display the received data parameters
 Log.d(TAG, "DATA CALLBACK: " +
 "channel name = " + channelName + ", " +
 "data length = " + data.length);

}

Audio Channels
This section describes the Cisco StadiumVision Mobile SDK audio channels and contains the following
sections:

• Getting the Audio Channel List, page 3-35

Getting the Audio Channel List

Cisco StadiumVision Mobile supports audio-only channels, in a similar manner as video channels.

Get a reference to the audio manager from the SDK

import com.cisco.svm.audio.SVMAudioManager;
 SVMAudioManager audioManager = StadiumVisionMobile.getAudioManager();

The application starts the audio channels by invoking

 audioManager.startAudioChannel(selectedChannel);

Stops them

audioManager.stopAudioChannel();

Audio channels will continue to play while other activities are active but will terminate when the
application enters background unless

 // enable background audio
 SVMAudioManager audioManager = StadiumVisionMobile.getAudioManager();
 audioManager.enableBackgroundAudio ();

Activities can check to see if audio is playing using isAudioActive ()

 if (audioManager.isAudioActive()) {
 // Audio is playing.
 }

Available audio channels are discovered the same way that video channels are discovered.

 SVMChannel[] channels = StadiumVisionMobile.getAudioChannelArray();

}

3-35
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 3 Cisco StadiumVision Mobile API for Google Android
 Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
EVS C-Cast Integration

Note Cisco StadiumVision Mobile is supported with EVS C-Cast version 2.x only. EVS C-Cast version 3.x is
not supported.

The steps below describe a high level workflow of how a Cisco StadiumVision Mobile powered C-Cast
app gains access to the XML timeline and media files.

1. Register a BroadcastReceiver to be notified when a file channel becomes available using
public Intent registerReceiver (BroadcastReceiver receiver, IntentFilter filter)

2. Register to receive the channel notification using
public static com.cisco.svm.app.SVMStatus addFileChannelObserver
(com.cisco.svm.channel.SVMChannel fileChannel, com.cisco.svm.file.ISVMFileObserver
observer)

3. Handle the file reception (movies/thumbnails /timeline) using
public void onFile (String channelName, String fileName,Integer fileState)

4. Check to see if a file channel is already available, using getFileChannelListArray.

5. If a channel is already available, or when a callback notification is received, register a file channel
observer, using
addFileChannelObserver

6. Check to see if a file named ccast-timeline.xml is already available, using
getFileDistributionLocalFilename

7. If the ccast-timeline.xml is not yet available, wait for additional files to arrive using onFile(). Each
time onFile() is called, do a corresponding check with getFileDistributionLocalFilename to see if
the new file is ccast-timeline.xml.

8. Once the ccast-timeline.xml file has been received, parse it using the steps in chapter 5 (How to build
the media path) of the C-Cast API spec, and then build the media path for all media files.

9. For each file media path, remove the path prefix so that only the filename remains. For example:
http://www.mydomain.com/videos/abc/def/ghi/abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8
becomes
abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8

10. For each filename, cycle through onFile() and getFileDistributionLocalFilename until all files
have been received.

11. Be prepared for the ccast-timeline.xml file to change at any time and repeat steps 6-8 whenever it
changes.
3-36
Cisco StadiumVision Mobile SDK Programmer’s Guide

Cis

C H A P T E R 4

Cisco StadiumVision Mobile API for Windows
Phone

First Published: May 26, 2015
Revised: June 12, 2015

This module describes the Cisco StadiumVision Mobile SDK Release 2.1 for Windows Phone and
contains the following sections:

• Introduction to Cisco StadiumVision Mobile SDK for Windows Phone, page 4-2

• Cisco StadiumVision Mobile and Windows Developer Tools, page 4-2

• Download and Unpack the SDK, page 4-3

• Getting Started with the Windows Demo App, page 4-4

– Compile the Demo App, page 4-4

– Customize the Demo App, page 4-4

– Embed the Cisco StadiumVision Mobile SDK in an Existing App, page 4-5

• How Cisco StadiumVision Mobile Fits into a Windows Phone App, page 4-8

• Cisco StadiumVision Mobile Methods and Functions for Windows, page 4-11

• Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples,
page 4-16

– Customizing the Default Video Player, page 4-24

– Video Channels, page 4-25

– Data Channels, page 4-26

– EVS C-Cast Integration, page 4-28
4-1
co StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Introduction to Cisco StadiumVision Mobile SDK for Windows Phone
Introduction to Cisco StadiumVision Mobile SDK for
Windows Phone

The Cisco StadiumVision Mobile Windows SDK contains the following components bundled together:

• .NET components, configuration files, player and layout XML files

• Windows Demo app with SDK video player

• API documentation (Doxygen build)

Note Cisco StadiumVision Mobile client application is designed for Windows Phones 8.1 and later, it is also
supported on ARM processor-powered devices. It is not supported on Windows Phones 8.0 and earlier,
all tablets, and x86 phone platforms. This means that the Windows Phone Emulator in Visual Studio is
not supported because the emulator operates in x86 mode.

The API uses .NET classes on Windows to access the Cisco StadiumVision Mobile data distribution and
video playback functionality within the Cisco StadiumVision Mobile Windows SDK library. DirectX is
used to display video in a SwapChainPanel XAML element. Due to the .NET interface, the Cisco
StadiumVision Mobile API can be called by C#/XAML client applications.

Note HTML/Javascript is not supported.

Table 4-1 describes the mobile operating system versions supported by the Cisco StadiumVision Mobile
SDK.

Table 4-1 Mobile OS Support

For additional information, refer to the Cisco StadiumVision Mobile Release Notes available from
Cisco.com at:

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-release-notes-list.html

Cisco StadiumVision Mobile and Windows Developer Tools
Table 4-2 lists the various build environment requirements.

OS

Windows Phone

8 8.1

Cisco StadiumVision Mobile SDK Release 2.1 No Yes

Table 4-2 Build Environment Requirements

Tool Version Description URL

Mac or
Windows PC

Windows 8.1 USB support is required if testing a
device.

—

Visual Studio 2013 Update 4
or later

Development tools: Visual Studio
2013, Professional or Express.

http://msdn.microsoft.com/en-us/library/dd831853.aspx
4-2
Cisco StadiumVision Mobile SDK Programmer’s Guide

http://msdn.microsoft.com/en-us/library/dd831853.aspx

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Download and Unpack the SDK
Complete the following steps below in the same order to enable a successful setup:

Step 1 Run Microsoft Windows 8.1, check for and install any additional security patch updates.

Note Windows version 8.1 is required if using a Mac. We recommend using BootCamp, however there
are multiple ways to emulate a Windows environment (such as virtual machine window or
VMWare Fusion) that haven’t been tested.

Step 2 Sign in to or create a Microsoft account at:

https://signup.live.com/signup.aspx?lic=1

Step 3 Install Visual Studio 2013 Update 4 (or later) Professional or Express.

Step 4 Plug in your Windows Phone to your workstation using a USB cable.

Step 5 Register your open/unlocked device for development at:

https://msdn.microsoft.com/en-us/library/windows/apps/dn614128.aspx

Step 6 Obtain the latest StadiumVisionMobileSample-Windows Phone 8-xxxx.zip file, contact your Cisco
account team for details as to how to become part of the Cisco StadiumVision Mobile SDK partner
program.

Download and Unpack the SDK

Step 1 Download StadiumVisionMobileSample-Windows Phone 8-xxxx.zip. If you do not have this file,
contact your Cisco account team for details as to how to become part of the Cisco StadiumVision Mobile
SDK partner program.

Step 2 Extract the downloaded package into a directory. Table 4-3 lists the extracted content and includes a brief
description.

Step 3 Open the API documentation available in the Doxygen build that is downloaded with the SDK. Navigate
to the extracted folder contents, open the SV Mobile for WP81 folder > StadiumVisionMobile >
Doxygen > html. Double-click index.html to launch the documentation in a web browser.

Table 4-3 Cisco StadiumVision Mobile SDK File Content

Contents Description

SV Mobile for WP81/ Contains binaries and Doxygen documentation.

CiscoSvmDemo/ Contains the SVM header files, static library, and demo app
source code.
4-3
Cisco StadiumVision Mobile SDK Programmer’s Guide

https://signup.live.com/signup.aspx?lic=1
https://msdn.microsoft.com/en-us/library/windows/apps/dn614128.aspx

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Getting Started with the Windows Demo App
Getting Started with the Windows Demo App
The Cisco StadiumVision Mobile SDK provided to app developers includes the source code for a
Windows Demo app. The purpose of the Demo app is to demonstrate what is possible and to enable a
new app developer to quickly get a working app up and running.

Note Before creating a new app, review the Cisco StadiumVision Mobile SDK Best Practices, page 1-9.

Compile the Demo App

Step 1 Launch Visual Studio to import the Demo app.

Step 2 Under File > Open > Project/Solution, locate and select CiscoSvmDemo.sln from the extracted folder
contents, click Open. You can also launch Visual Studio by double-clicking the CiscoSvmDemo.sln file.

Step 3 Select the applicable device from the center of the icon bar located near the top of the Visual Studio
window. If the bar does not show the Device selection, change it to the ARM selection in the Build |
Configuration Manager. The Device selection will then be visible.

Note It is not possible to operate the Demo app using the Windows Phone emulator, however it is possible to
operate the Demo app on a device because the emulator requires x86 support which is not currently
available with the Cisco StadiumVision Mobile SDK.

Although you can manually select a different target, in order for the change to work you must make the
change in the Build | Configuration Manager.

• A selection of ARM will change the target to the Device.

• A selection of Win32 will change the target to one of the emulator versions.

Even if you change the target drop-down from the center of the icon bar, Visual Studio will still build
for the last platform selected in the Configuration Manager. In order to prevent compatibility issues, you
must make the change in the Configuration Manager and not just the target drop-down.

Step 4 Click the Build | Rebuild menu bar selection. The build output can be seen in the window at the
bottom of the screen made visible by the View | Output menu bar selection.

Step 5 Click the device selected above, start the build and run.

Note A device must be registered for development on a Microsoft account and be open (unlocked) in order to
function.

Customize the Demo App
There are many ways to customize the Cisco StadiumVision Mobile Windows demo app including the
following:
4-4
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Getting Started with the Windows Demo App
Step 1 Create a copy of the CiscoSvmDemo folder.

Step 2 Open the copied CiscoSvmDemo.sln file from the CiscoSvmDemo folder.

Step 3 Right-click the View Designer link from the VideoPage.xaml entry (located under the SVM Demo
project in Solutions Explorer) to open the XAML designer.

Step 4 Use the XAML Designer or Blend to make changes as appropriate for the name of the application,
additional buttons, and so on. The SwapChainPanel element can contain sizing information and also can
be placed in other elements, such as Grid.

Note Results are not always predictable and some experimentation is required as the SwapChainPanel
element does not give expected results if placed in certain elements such as ViewBox.

Step 5 After changes are made to the XAML file, build, and then run the changed file as described in Compile
the Demo App, page 4-4.

Embed the Cisco StadiumVision Mobile SDK in an Existing App

Integration Checklist

To embed the Cisco StadiumVision Mobile SDK into an existing app, follow the integration list below:

1. Supported Windows OS and Visual Studio Versions

– You must be running Windows 8.1 or later with all of the current updates.

2. Windows Project Template

– Select one of the project templates from Store Apps | Windows Phone Apps.

3. Windows App Permissions

– Add any required permissions to "Package.appxmanifest" using the UI display.

4. Add References

– Add a reference to Microsoft Visual C++ 2013 Runtime Package for Windows Phone from the
Windows 8.1 Extensions category.

– Add a reference to the StadiumVisionMobile by browsing to "…\SV Mobile for
WP81\StadiumVisionMobile\bin\ARM\Debug\StadiumVisionMobile.dll".

The correct mode (Debug or Release) StadiumVisionMobile library needs to be added as a
reference or an immediate crash will occur at runtime. You can either add the library
reference manually when switching modes, or modify the CiscoSvmDemo.csproj file by
having it select the proper mode for the reference. Use $(Configuration) rather than Debug or
Release in the lines:
<ItemGroup>
 <Reference Include="StadiumVisionMobile, Version=1.0.0.0, Culture=neutral,
processorArchitecture=ARM">
 <SpecificVersion>False</SpecificVersion>
 <HintPath>..\SV Mobile for
WP81\StadiumVisionMobile\bin\ARM\$(Configuration)\StadiumVisionMobile.dll</HintPat
h>
 </Reference>
 </ItemGroup>
4-5
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Getting Started with the Windows Demo App
5. Set a Video "SwapChainPanel"

– Add a "SwapChainPanel" to the player Window’s layout XAML file. SwapChainPanel is not in
the Designer Toolbox, but it is derived from the "Grid" component and is manually entered into
the XAML text. The SwapChainPanel element can contain sizing information and also can be
placed in other elements, such as Grid.

Note Results are not always predictable and some experimentation is required as the
SwapChainPanel element does not give expected results if placed in certain elements such
as ViewBox.

6. NuGet Packages

– The app requires reference to the NuGet package "Newtonsoft.Json" version 6.0.8 or later for
the platform "wp81".

7. Life-Cycle Notifications

– Forward life-cycle notifications to the Cisco StadiumVision Mobile SDK, which is similar to
how it’s done the CiscoSvmDemo app sample.

Channel ListBox Window Example

The function "doInBackground" in the CiscoSvmDemo program "VideoPage.xaml.cs" illustrates the
following actions:

• Periodically obtains the list of available video channels

• Update the Window’s ListBox with the channel list

Video Channel Selection Example

The following example illustrates the following actions:

• Plays the video channel selected in the ListBox

 private void VideoFilesList_SelectionChanged(object sender,
SelectionChangedEventArgs e)
 {
 if (channels != null)
 {
 // get the selected channel
 SVMChannel selectedChannel =
channels[((ListBox)sender).SelectedIndex];

 Log.d(TAG, "Selected Video Channel = '" +
selectedChannel.name +
 "', bandwidthKbps = " +
selectedChannel.bandwidthKbps +
 "', timestampMs = " +
selectedChannel.timestampMs);

 // play the selected channel by launching the
"VideoPlayerPage"
 String parms =
String.Format("channel={0}&scaling={1}", selectedChannel.name,
StadiumVisionMobile.objSVM.VideoScalingModeAspectFit);
 Frame.Navigate(typeof(VideoPlayerPage), parms);
 }
4-6
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Getting Started with the Windows Demo App
Window Life-Cycle Notifications

The client app needs to notify the StadiumVision Mobile SDK of its life-cycle notifications. This allows
the StadiumVision Mobile SDK to automatically shut down and restart as needed. Each client Window
needs to forward its life-cycle notifications, as shown in the following example:

public void onResume()
{

// notify the Cisco StadiumVision Mobile framework of the life-cycle event
StadiumVisionMobile.objSVM.onResume();

objBkgThread = ThreadPool.RunAsync(new WorkItemHandler(doInBackground));

// Loop until worker thread activates.
while (objBkgThread.Status != AsyncStatus.Started) ;

}

public void onPause()
{

// terminate the channel update background thread
RequestStop();

// notify the Cisco StadiumVision Mobile framework of the life-cycle event
StadiumVisionMobile.objSVM.onPause();

}

Configuration

There is one configuration file that must be bundled with any Windows app using the StadiumVision
Mobile SDK (shown in Table 4-4).

An example set of fields in the "cisco_svm.cfg" file is shown below. These fields must match the channel
settings in the Cisco "Streaming Server" for the channels to be accessible by the application.

{
"license": {

"venueName": "Stadium-A",
"contentOwner": "Multi-Tenant Team-B",
"appDeveloper": "Vendor-C"

}
}

Table 4-4 Configuration File

Config File Name Description

"cisco_svm.cfg" Cisco StadiumVision Mobile SDK configuration file that
contains the "Field-of-Use" parameters and some optional
Wi-Fi network debugging information. The three
"field-of-use" properties in the "cisco_svm.cfg"
configuration file that need to be configured for each
StadiumVision Mobile application are:

• Venue Name

• Content Owner

• App Developer
4-7
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
Wi-Fi AP Info Configuration (Optional)

The "cisco_svm.cfg" config file can optionally include an array of Wi-Fi AP information that will be
used by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example Wi-Fi
AP info entry in the "cisco_svm.cfg" config file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

How Cisco StadiumVision Mobile Fits into a Windows Phone App

Cisco StadiumVision Mobile Class Overview
Figure 4-1 describes the StadiumVision Mobile classes.

The SVMVideoPlayerPage class is a class within StadiumVisionMobile rather than an inherited class for
the app's video page. A connection from the Windows Phone app to the SVMVideoPlayerPage class
includes a reference to the "Windows DirectX SwapChainPanel" when the StadiumVisionMobile class
is instantiated.

Figure 4-1 StadiumVision Mobile Class

Figure 4-2 depicts the Windows OS with regard to Pages. A Page represents both the screen layout and
controller code or Code Behind. A new Page is launched by sending an Event to the Windows OS. An
Event is a message to Windows OS to launch a particular page. Extra parameters contained in an Event
and are passed to a Page. The back button is typically a hard (sometimes soft) device button used to
generically display the previous Page, and moves back down the Page stack.
4-8
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
Figure 4-2 Windows Overview

Figure 4-3 depicts the Window inheritance between the Windows OS, Cisco StadiumVision Mobile, and
the Customer App.

Figure 4-3 Windows Video Player Window Inheritance
4-9
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
Figure 4-4 Cisco StadiumVision Mobile Integration Overview

Customer Application Roles

Figure 4-5 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlay
4-10
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
Figure 4-5 Customer Application Responsibilities

Cisco StadiumVision Mobile Methods and Functions for Windows

Cisco StadiumVision Mobile Windows API Summary

Table 4-5 summarizes the Windows API library. Detailed API information is available in documentation
Doxygen build that is downloaded with the SDK. Navigate to the SV Mobile for WP81 folder >
StadiumVisionMobile > Doxygen > html. Double-click index.html to launch the documentation in a
web browser.

Table 4-5 Cisco StadiumVision Mobile Windows API Summary

Return Type API Method Name API Method Description

ApplicationDataContainer getSharedPreferences Gets the SharedPreferences object that can be used to save
arbitrary, app-specific preference settings that survives app
restarts.

async Task start Starts the SVM SDK and any required SVM background
threads and component managers.

async Task <Dictionary
<String, Object>>

getFileDistributionTable Gets the current SDK file distribution table.

Dictionary<String, String> getStats Gets a C# Dictionary of current SVM SDK stats/counter
values.

JObject getConfig Gets the current SDK configuration as a 'JObject' object.

List<String> getAllowedReporterUrls Gets a list of the Reporter stats upload URLs associated
with Streamer servers (duplicate entries are removed).

List<String> getLogComponentList Gets a C# list of available components which can have their
component logging level set individually.
4-11
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
List<String> getLogLevelList Gets a C# list of available logging levels that can be applied
to any component.

String getAppSessionUUID Gets the app session UUID that is generated by SVM SDK.
This UUID uniquely identifies each time the SVM SDK is
started and is used for consistent statistics collection and
reporting.

String getDeviceUUID Gets the device UUID that was generated by the SVMSDK
and saved in the app's shared preferences.

Note Windows does not provide a consistent and reliable
device UUID across all of the Windows Phone OS
versions supported by the SVM SDK, therefore a
generated device UUID is used instead.

String getFileDistributionLocalFilena
me

Gets the local filesystem filename for any object given its
URI and the file channel.

String getLocalIpAddress Gets the IP address of the local device.

String getVideoSessionUUID Gets the video session UUID that is generated by the SVM
SDK. This UUID uniquely identifies the current active
video channel and is used for consistent statistics collection
and reporting.

String sdkVersion Property that contains the SVM SDK version

String[] getLogComponentArray Gets a C# array of available components which can have
their component logging level set individually.

String[] getLogLevelArray Gets a C# array of available logging levels that can be
applied to any component.

SVMBatteryInfo getBatteryInfo Gets the current battery info for the device. This
information gets collected in the statistics information that
is uploaded to the Reporter server (if stats collection is
enabled).

SVMChannel[] getDataChannelArray Gets a C# array of available data channels.

SVMChannel[] getFileChannelArray Gets a C# array of available file channels.

SVMChannel[] getVideoChannelArray Gets a C# array of available video channels.

SVMChannelList getDataChannelList Gets a C# list of available data channels.

SVMChannelList getFileChannelList Gets a C# list of available file channels.

SVMChannelList getVideoChannelList Gets a C# list of available video channels.

SVMChannelManager getChannelManager Gets the channel manager.

SVMInventoryManager getInventoryManager Gets the internal inventory manager.

SVMLocation getCurrentLocation Gets the current location.

SVMServiceStateEnum getServiceState Gets the service state.

SVMStreamer[] getStreamerArray Returns an array of Streamer servers detected by the SVM
SDK; with each Streamer entry represented as an
'SVMStreamer' object in the array.

Table 4-5 Cisco StadiumVision Mobile Windows API Summary (continued)

Return Type API Method Name API Method Description
4-12
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
SVMStreamerList getStreamerList Gets the list of Cisco SVM Streamer servers detected by the
SDK.

SVMStatsManagerStats getStatsManagerStats Gets the current stats manager information.

SVMStatus addFileChannelObserver Registers an observer class to receive data for a particular
file channel.

SVMStatus addDataChannelObserver Registers an observer class to receive data for a particular
data channel.

SVMStatus allowAllStreamers Allows all Streamers to be processed by the SDK.

SVMStatus allowStreamers Allows only the specified Streamers in the list to be
processed by the SDK.

SVMStatus disableQualityMonitoring Disables quality monitoring within the SDK.

SVMStatus disableStatsCollection Disables the SVM SDK from performing statistics
collection and thereby disables the uploading of the
statistics information to the Reporter server.

SVMStatus enableQualityMonitoring Enables quality monitoring within the SDK.

SVMStatus enableStatsCollection Enables the SVM SDK from performing statistics
collection and uploading to the Reporter server.

SVMStatus removeDataChannelObserver Unregisters an observer class from receiving data for a
particular data channel name.

SVMStatus removeFileChannelObserver Unregisters an observer class from receiving data for a
particular file channel.

SVMStatus setLogLevel Sets the global logging level for the entire SVM SDK, with
all internal components getting their logging level set to the
same level.

SVMStatus setConfig Sets the SVM SDK configuration at run-time using a
populated 'JObject' object. This method will override any
configuration properties set with the 'cisco_svm.cfg'
configuration file.

SVMStatus setConfigWithString Sets the SVM SDK configuration at run-time using a
JSON-formatted 'String' object. This method will override
any configuration properties set with the 'cisco_svm.cfg'
configuration file.

SVMStatus shutdown Shuts down the SVM SDK.

SVMWifiInfo getWifiInfo Gets the current Wi-Fi connection information. This
information gets collected in the statistics information that
gets uploaded to the Reporter server (if stats collection is
enabled).

void displayMessage Displays the given string as a Windows Phone "toast"
message that overlays anything currently on the device
screen.

void killAppProcess Kills the entire Windows Phone application.

void onCreate Calls on application startup.

Table 4-5 Cisco StadiumVision Mobile Windows API Summary (continued)

Return Type API Method Name API Method Description
4-13
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
Return Status Object

Each API call returns an ‘SVMStatus’ object whenever applicable. Table 4-6 lists the SVMStatus object
fields.

void onData Implements the customer app and is used as a callback from
the SVM SDK. Each callback from the SDK to the customer
app provides a received data message on the given data
channel, delivered as a byte array.

void onDestroy Destroys an activity.

void onPause Forwards each client app Window’s "onPause" life-cycle
event allows the SVM SDK to declare the client Windows
app as "active" and potentially restart all of the internal
component managers and threads that use the device’s CPU
and networking resources.

This method must be called by each individual client app
Window’s "onPause" method to inform the SVM SDK of
when a client app Window has stopped.

void onResume Forwards each Windows Page 'onResume' life-cycle
notification to the SVM SDK to declare the client Windows
app as "inactive" and shutdown all CPU and networking
resources used by the SVM SDK.

This method must be called by each individual client app
Window’s "onResume()" method to inform the SVM SDK
of when a client app Window has started.

void setInactivityTimeoutMs Sets the inactivity timer timeout threshold used by the SVM
SDK to determine when the client Windows app has
"stopped".

Table 4-5 Cisco StadiumVision Mobile Windows API Summary (continued)

Return Type API Method Name API Method Description

Table 4-6 SVMStatus Object

Type BOOL String

Property ok error

Description

Boolean indicating whether the API call was successful or not.

If the API call was not successful (ok =false), this string describes the error.

Example Usage

// make an api call
SVMStatus status = StadiumVisionMo-
bile.start(); // if an error occurred
if (status.ok == false){
// display the error description
Log.e(TAG, "Error occurred: " + status.error);
4-14
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
How Cisco StadiumVision Mobile Fits into a Windows Phone App
Table 4-7 lists the dictionary keys and stats description for the getStats API.

Table 4-7 getStats API Dictionary Keys and Stats Description

Stats Dictionary Key Stats Description

announcementsMalformed Number of malformed channel announcements received.

announcementsNotAllowed Number of received announcements not allowed (source Streamer is not allowed).

announcementsReceived Number of received channel announcements.

announcement_session_id Video session announcement ID.

announcement_session_title Session announcement name.

channelsAdded Number of times that the channel listener added a channel to the channel.

channelsPruned Number of times that the channel listener pruned a channel from the channel list.

invalidJsonAnnouncements Number of received announcements with an invalid JSON body.

ipv4Announcements Number of IPv4 channel announcements received.

ipv6Announcements Number of IPv6 channel announcements received.

licenseMismatchAnnouncements Number of received announcements with mismatched license information.

listenerIgmpRestarts Number of announcement listener IGMP restarts.

num_compressed_announcements Number of compressed announcements received.

num_dropped_video_frames Total number of video frames dropped.

num_ts_discontinuities Total number of MPEG2-TS packet discontinuities.

protection_windows Total number of protection windows sent.

session_link_indicator Health of the Wi-Fi network connection. Ranges from 0 (poor) to 10 (excellent).

session_uptime Length of time the session has been active (in seconds).

total_num_bytes_written Total number of video bytes played.

window_error Total number of protection windows with more packets per window than can be
supported by SVM.

window_no_loss Total number of protection windows with no dropped video packets.

window_recovery_failures Total number of protection windows that could not recover dropped packets.
Recovery failure occurs when the number of received repair packets is less than the
number of dropped video packets.

window_recovery_successes Total number of protection windows with recovered video packets.

window_warning Total number of protection windows with more packets per window than the
recommended value.

versionMismatchAnnouncements Number of received announcements with a mismatched version number.
4-15
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
Video Player Window API Summary

The SVMVideoPlayerPage class can be extended and customized. Table 4-8 lists the
SVMVideoPlayerPage API methods and descriptions.

Adding Cisco StadiumVision Mobile Services to a Windows
App—Code Structure and Samples

This section describes the SDK workflow, and contains the following sections:

• Starting the SDK, page 4-17

• Cisco StadiumVision Mobile Service Up or Down Indicator, page 4-17

• In-Venue Detection, page 4-18

• Set the SDK Configuration at Run-Time, page 4-19

• Get the SDK Configuration, page 4-20

• setConfigWithString API Method, page 4-21

Table 4-8 Video Player Window API Summary

Return Type API Method Name API Method Description

SVMStatus playLive Moves the video playback buffer pointer to the head ("live") offset position
in the video playback buffer.

This convenience method acts as a wrapper for the "seekAbsolute" API
method; making "playLive()" equivalent to "seekAbsolute(0)".

SVMStatus playVideoChannel Starts playback of a particular video channel, changing channels on
subsequent calls.

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the current playback
buffer offset position. Should a duration e given that is larger than the size
of the video history buffer, the SVM SDK will rewind the video play-head
as far as possible.

This convenience method acts as a wrapper for the "seekRelative" API
method; making the given "durationMs" value negative before calling
"seekRelative". For example, "rewindForDuration(20000)" is equivalent to
"seekRelative(-20000)".

SVMStatus seekAbsolute Seeks the playback buffer pointer from the head ("live") offset position of
the video playback buffer

• To play the most current live video pass in on offset of zero (0 ms).

• To play a video from the past, a positive duration will be used as an
offset for rewinding back in time (relative to the "live" position).

SVMStatus seekRelative Seeks the playback buffer pointer relative to the current playback buffer
offset position.

SVMStatus setVideoSurfaceView Sets the Windows UI "SwapChainPanel" where video frames will get
rendered.

SVMStatus shutdown Stops video playback of the currently playing video channel by stopping
the native player, native decoder, and terminating the video player window.
4-16
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
• Get the Available Streamer Servers, page 4-21

• Additional Statistics, page 4-22

• Video Player State Notifications, page 4-22

• Video Player "Channel Inactive" Event, page 4-23

Starting the SDK

Start the StadiumVision Mobile SDK from the application’s main Windows launch Page, as shown in the
following example.

static public StadiumVisionMobile objSVM = new StadiumVisionMobile(); // create exactly
once

Cisco StadiumVision Mobile Service Up or Down Indicator

The Cisco StadiumVision Mobile SDK includes an indicator to the application indicating if the SVM
service is up or down. This indication should be used by the application to indicate to the user whether
the SVM service is available or not. Service is declared 'down' by the SDK when any of the following
are true:

• The SDK detects that the video quality is poor.

• The SDK detects that no valid, licensed channel are available.

• The mobile device's Wi-Fi interface is disabled.

Poor video quality can occur when the user is receiving a weak Wi-Fi signal; causing data loss. There
are two different ways that the Windows app can get the "Service State" from the SDK:

• Register to receive the "Service Up/Down" notifications.

• Fetch the current service state from the SDK on-demand.

When the app receives the "Service Down" notification, the SDK will supply a bitmap containing the
reasons why the service was declared as 'down' by the SDK. The 'reasons' bitmap is given in Table 4-9.

Note For additional Service Down Notification details, refer to “Cisco StadiumVision Mobile SDK Best
Practices” section on page 1-9.

Table 4-9 Service Down Notifications

Service Down Reason Constant

Poor video quality networking conditions
detected

StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_POOR_QUALITY

Wi-Fi connection is down StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_WIFI_DOWN

No valid SVM channels have been detected StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_NO_CHANNELS

SDK not running StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_SDK_NOT_RUNNING
4-17
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
Receiving "Service Up/Down" Notifications

The following example shows how to register and handle the "Service Up/Down" notifications from the
SDK:

SVMVideoPlayerPage objVpa;

objVpa = new SVMVideoPlayerPage(currentChannel);

 // register to receive events from SVM
 objVpa.onServiceUp += onServiceUp;
 objVpa.onServiceDown += onServiceDown;

 /// <summary>
 /// Called to notify of service up
 /// </summary>
 private void onServiceUp()
 {
 Log.i(TAG, "CLIENT: SERVICE UP");

 // Create a toast notification that the svm service is up
 PopToast("SVM Service is UP");
 }

 /// <summary>
 /// Called to notify of service down
 /// </summary>
 private void onServiceDown()
 {
 Log.i(TAG, "CLIENT: SERVICE DOWN");

 // Create a toast notification that the svm service is down
 PopToast("SVM Service is DOWN");
 /*
 * EXIT THIS PAGE NOW!
 */
 Application.Current.Exit();
 }

Get the Current "Service Up / Down" State On-Demand

The "getServiceState" API method can be used to fetch the current service state from the SDK. The
following example shows how to fetch the current service state from the SDK using the
"getServiceState" API call:

// get the current svm service state
SVMServiceStateEnum serviceState = objSVM.getServiceState();

// determine the current service state
if (serviceState == SVMServiceState.SVM_SERVICE_STATE_UP) {

Log.i(TAG, "### SERVICE STATE: UP");
} else if (serviceState == SVMServiceState.SVM_SERVICE_STATE_DOWN) {

Log.i(TAG, "### SERVICE STATE: DOWN");
}

In-Venue Detection

The StadiumVision Mobile Release 2.1 SDK provides a mechanism to detect whether the mobile device
is connected within the SVM-enabled venue or not.
4-18
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
There are two different ways that the Windows app can get this "In-Venue Detection" state from the
SDK:

• Register to receive the "In-Venue Detection" notifications.

• Fetch the current "In-Venue" state from the SDK on-demand.

Receiving "In-Venue Detection" Notifications

The following example shows how to register and handle the "In Venue Up/Down" notifications from
the SDK:

// register to receive events from SVM
objSVMChannelManager.venueEvent += onVenueChange;

 /// <summary>
 /// Called to notify of venue change
 /// </summary>
 private void onVenueChange (object sender, VenueEventArgs e)
 {
if (e.venueState == StadiumVisionMobile.objSVM.SVM_VENUE_CONNECTED_EVENT_TAG)
{
 Log.i(TAG, "CLIENT: VENUE CONNECTED");
} else {
 Log.i(TAG, "CLIENT: VENUE DISCONNECTED");
}

Get the Current "In-Venue" State On-Demand

The "isConnectedToVenue" API method can be used to fetch the current in-venue state from the SDK.
The following example shows how to fetch the current service state from the SDK using the
"isConnectedToVenue" API call:

// get whether the device is currently connected to the SVM licensed venue
boolean isConnectedToVenue = StadiumVisionMobile.objSVM.isConnectedToVenue();

// log whether the device is currently connected to the SVM licensed venue Log.i(TAG, "###
Connected to the venue: " + (isConnectedToVenue ? "YES" : "NO"));

Set the SDK Configuration at Run-Time

The application can set the SDK configuration at run-time through an API method. This allows the
application to dynamically configure the SDK. For example, the application can fetch the SDK
configuration information from a network connection and then pass that configuration to the SDK.

Two different ways to set the SDK configuration at run-time:

• "setConfig"

The signature of the "setConfig" API method is given below:

// configure the sdk using a JSON object containing the configuration settings
public static SVMStatus setConfig(JObject givenJsonConfig)

// configure the SDK using an nsdictionary containing the configuration settings

• "setConfigWithString"

The signature of the "setConfigWithString" API method is given below:

// configure the sdk using a json-formated string containing the configuration
settings
4-19
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
public static SVMStatus setConfigWithString(String jsonConfigStr)

The following example shows how to set the SDK configuration using the "setConfigWithString"
API method:

// create the json config string
String configString =

@"{"
" \"license\": {"
" \"venueName\": \"MyVenueNameKey\","
" \"contentOwner\": \"MyContentOwnerKey\","
" \"appDeveloper\": \"MyAppDeveloperKey\""
" }"
"}";

Get the SDK Configuration

"getConfig" API Method

The signature of the "getConfig" API method is given below:

// get the current cisco sdk configuration
public static JObject getConfig()

The example below fetches the current configuration from the SDK, and then accesses the configuration
values in the configuration JSON object:

// get the sdk configuration dictionary
JObject configObj = StadiumVisionMobile.getConfig();

// get the license dictionary from the config dictionary
JObject licenseObj = null;
try {

licenseObj = configObj.getJObject("license");
} catch (JSONException e) {

e.printStackTrace();
}

// if the license object is valid
if (licenseObj != null) {
// get the current set of configured license keys

String venueName = licenseObj.getString("venueName");
String contentOwner = licenseObj.getString("contentOwner");
String appDeveloper = licenseObj.getString("appDeveloper");

}

The following example shows how to set the SDK configuration using the "setConfig" API method:

// create the config json object with the set of licensing keys
JObject jsonConfig = new JObject();
JObject licenseConfig = new
JObject(); try {

licenseConfig.put("venueName", "MyVenueNameKey");
licenseConfig.put("contentOwner", "MyContentOwnerKey");
licenseConfig.put("appDeveloper", "MyAppDeveloperKey");
jsonConfig.put("license", licenseConfig);

} catch (JSONException e) {
// log the error
Log.e(TAG, "Error building the json config object");
e.printStackTrace();

}

4-20
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
// update the cisco sdk configuration at run-time
StadiumVisionMobile.setConfig(jsonConfig);

setConfigWithString API Method

The signature of the "setConfigWithString" API method is given below:

// configure the sdk using a json-formated string containing the configuration settings
public static SVMStatus setConfigWithString(String jsonConfigStr)

The following example shows how to set the SDK configuration using the "setConfigWithString" API
method:

// create the cisco sdk json configuration string
String config =

"{" +
" \"license\": {" +
" \"venueName\": \"MyVenueNameKey\"," +
" \"contentOwner\": \"MyContentOwnerKey\"," +
" \"appDeveloper\": \"MyAppDeveloperKey\"" +
" }" +
"}";

// update the cisco sdk configuration at run-time
StadiumVisionMobile.setConfigWithString(config);

Get the Available Streamer Servers

The Windows SDK detects the available Streamer servers and provides an API to get the list of servers.
A venue will typically only have a single Streamer server. The list is presented as an array of
"SVMStreamer" objects.

// get the detected streamer servers as a .NET array of "SVMStreamer" objects
public static SVMStreamer[] getStreamerArray()

Each "SVMStreamer" object contains the following properties listed in Table 4-10.

The following example shows how to get the list of StadiumVision Mobile Streamer servers detected by
the SDK:

// get the list of currently available streamer servers
SVMStreamerList streamerList = StadiumVisionMobile.objSVM.getStreamerList();

// iterate through the list of streamer objects

Table 4-10 SVMStreamer Object Properties

SVM Streamer Property Type Description

ipAddress String IP address of the StadiumVision Mobile streamer
server.

isAllowed boolean Whether this StadiumVision Mobile Streamer
server is allowed by the user of this SDK.

statsPublishIntervalMs int SDK stats HTTP upload interval.

statsSampleIntervalMs int SDK stats sample interval.

statsUploadUrl String StadiumVision Mobile Reporter stats upload http
url.
4-21
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
foreach (SVMStreamer nextStreamer in
streamerList) {

// get the properties of the next streamer server object
String ipAddress = nextStreamer.getIpAddress();
String statsUploadUrl = nextStreamer.getStatsUploadUrl();
int statsSampleIntervalMs = nextStreamer.getStatsSampleIntervalMs();
int statsPublishIntervalMs = nextStreamer.getStatsPublishIntervalMs();
boolean isAllowed = nextStreamer.isAllowed();

}

Additional Statistics

Beginning with the Cisco StadiumVision Mobile Release 2.0 SDK, the existing "stats" API call returns
the following additional categories of stats information:

• Reporter upload stats

• Multicast channel announcement stats

• Licensing stats

The signature of the existing "getStats" API method is given below:

// get the current set of cisco sdk stats as a dictionarymap
public Dictionary<String, String> getStats()

Note For a detailed table of the hash keys and stats description for the getStats API refer to Table 4-7.

Table 4-11 details the StatsManager dictionary keys and descriptions.

Video Player State Notifications

The SDK generates event notifications for each of the video player state transitions (listed in Table 4-12.
The application can listen to these notifications and take action based on the video player's state
transitions.

Table 4-11 StatsManager Dictionary Keys

Dictionary Key Description

statsUploadAttempts Number of Reporter stats upload attempts.

statsUploadErrors Number of Reporter stat manager errors other than upload issues
(for example, stat generation failures).

statsUploadFailures Number of Reporter stats upload failures.

statsUploadRejects Number of Reporter stats delivered but rejected.

statsUploadSuccesses Number of Reporter stats upload successes.
4-22
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
The following example shows how to subscribe to receive the video player event messages, and then
parse the messages for the (1) channel name and (2) video player state:

// subscribe to channel event

public void registerChannelListChanged()
 {
 SVMChannelListener.objSVMChannelListener.channelChangeEvent
+= onChannelStateChanged;
 }

 public void unregisterChannelListChanged()
{

SVMChannelListener.objSVMChannelListener.channelChangeEvent

-= onChannelStateChanged;
}

private void onChannelStateChanged(object sender,
StadiumVisionMobile.ChannelChangeEventArgs e)
{
// e.channelName & e.channelState are two string arguments reported by
the event

// Video Player State Notification is contained in string e.channelState
}

Video Player "Channel Inactive" Event

To detect that a currently playing video channel has become invalid (due to Streamer server admin
changes), the SVM video player ("SVMVideoPlayerPage") provides an event to tell the video player
sub-class (ie: "VideoPlayerPage") that the currently playing channel is no longer valid.

When a channel becomes invalid, playback of the video channel is automatically stopped.

Table 4-12 Video Player State Notification

Video Player State Notification Description

StadiumVisionMobile.objSVM.SVM_VIDEO_CLOSED_STATE Occurs when the video player closes the video
channel session.

StadiumVisionMobile.objSVM.SVM_VIDEO_DESTROYED_STATE Occurs when the video player is terminated and
destroyed.

StadiumVisionMobile.objSVM.SVM_VIDEO_PAUSED_STATE Occurs when the video player pauses video
playback.

StadiumVisionMobile.objSVM.SVM_VIDEO_PLAYING_STATE Occurs when the video player starts playing the
video channel.

StadiumVisionMobile.objSVM.SVM_VIDEO_RESTARTING_STATE Occurs when the video player restarts video
playback.

StadiumVisionMobile.objSVM.SVM_VIDEO_STOPPED_STATE Occurs when the video player stops video playback.
4-23
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
To receive these callbacks, the "onCurrentChannelInvalid" method must be overridden by the
'SVMVideoPlayerPage' sub-class (ie: "MyVideoPlayerPage"). The following example shows the method
signature and implementation of this event method:

SVMVideoPlayerPage objVpa;
objVpa = new SVMVideoPlayerPage(currentChannel);
// register to receive events from SVM
objVpa.onCurrentChannelInvalid += onCurrentChannelInvalid;

/// <summary>
/// Called to notify of channel invalid (inactive)
/// </summary>
private void onCurrentChannelInvalid()
{
}

Customizing the Default Video Player
This section describes customizing the video player. The default Cisco video player has the following
features:

• Implements as a separate Windows "Page."

• Supports fullscreen video views or partial screen views inside the "SwapChainPanel" XAML
control.

• Renders video frames using Window "SwapChainPanel."

• Uses a customized video player.

Figure 4-6 Default Cisco Video Player

Figure 4-7 SVMVideoPlayerPage API
4-24
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
Cisco Demo Video Player

The Cisco demo video player:

• Implemented as "VideoPlayerPage."

• Extends the "SVMVideoPlayerPage" class.

• Handles all video overlays and gestures.

• Uses standard Windows XAML layout files.

The video player’s XAML layout file defines:

• The "SwapChainPanel" video rendering area.

• Any transparent video overlays.

• Play/Pause/Rewind button graphic files.

• Animations used to show/hide the transport controller (splash screen).

The customized video play extends the "SVMVideoPlayerPage" base class, as shown below:

SVMVideoPlayerPage objVpa;
objVpa = new SVMVideoPlayerPage(currentChannel);

Video Channels
This section describes the Cisco StadiumVision Mobile SDK video channels and contains the following
sections:

• Getting the Video Channel List, page 4-25

• Presenting the Video Channel List, page 4-26

• Playing a Video Channel, page 4-26

• Seeking Within the Video Buffer, page 4-26

• Setting the Video Dimensions, page 4-26

Getting the Video Channel List

The StadiumVision Mobile SDK dynamically receives all of the available channels (via Wi-Fi
multicast). The client application gets an array of channel objects (SVMChannel[]) through the
"getVideoChannelArray" API call, as shown in the following example:

using SvmSdk;
// get the list of available video channels
SVMChannel[] channels = StadiumVisionMobile.getVideoChannelArray();

// display some channel information
Log.d(TAG, "Channel Name = "+ channels[0].name);
Log.d(TAG, "Channel Bandwidth = " + channels[0].bandwidthKbps);
Log.d(TAG, "Channel Body Text = " + channels[0].bodyText);
4-25
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
Presenting the Video Channel List

Each "SVMChannel" video channel object contains all of the information needed to display the channel
list to the user. The SVMChannelObject properties and descriptions are shown in Table 4-13.

Playing a Video Channel

The following example shows playing a video channel, and performs the following actions:

• Selects a channel from the locally saved channel list.

• Starts video playback of the channel by launching the custom video player page ("VideoPlayer").

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in device RAM. The following example shows jumping
backwards 20 seconds in the video buffer (instant replay):

// rewind video playback 20 seconds
objVpa.seekRelative(-20000);

The following example shows jumping back to the top of the video buffer ("live" video playback):

// seek to the top of the video buffer (0 ms offset)
objVpa.seekAbsolute(0);

Setting the Video Dimensions

The video region is rendered within a SwapChainPanel. The video region is configured using standard
Windows layout XAML techniques.

Data Channels
This section describes the Cisco StadiumVision Mobile SDK data channels and contains the following
sections:

• Getting the Data Channel List, page 4-27

• Observing a Data Channel, page 4-27

Table 4-13 SVMChannel Object Properties

SVMChannel Property Property Description

appDeveloper Name of the application developer.

bandwidthKbps Data bandwidth consumed by the channel (in kbps).

bodyText Complete text description of the video channel.

channelType Type of the channel.

contentOwner Name of the content owner.

name Name of the channel.

sessionNum Session number of the channel.

venueName Name of the venue.
4-26
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
Getting the Data Channel List

The StadiumVision Mobile SDK dynamically receives all of the available data channels (via Wi-Fi
multicast). The client application gets an array of channel objects (SVMChannel[]) through the
"getDataChannelArray" API call, as shown in the following example:

using SvmSdk;

// get the list of available data channels
SVMChannel[] channels = StadiumVisionMobile.objSVM.getDataChannelArray();
// display some channel information
Log.d(TAG, "Channel Name = "+ channels[0].name);
Log.d(TAG, "Channel Bandwidth = " + channels[0].bandwidthKbps);
Log.d(TAG, "Channel Body Text = " + channels[0].bodyText);

Observing a Data Channel

Any data channel can be observed by registering an event to receive callbacks for all data received on
that channel. The registered event needs to implement the "ISVMDataObserver" interface, as shown in
the following example:

using SvmSdk;

// register to receive data from the given data channel
StadiumVisionMobile.objSVM.nativeAPI.dataAvailableEvent += onDataHandler;

The "onData" method is called to push the received data to the registered class, as shown in the following
example:

/**
* This method is the implementation of the ISVMDataObserver interface.
* The latest received data for the given 'channelName' is forwarded to
* this method from a Windows event class, so that this method can
* safely update the WP8 UI
*/

private void onDataHandler(object sender, NativePlayer.DataAvailableEventArgs e)
{

// UI update
onData(e.channelName, e.dataBytes);

}
public async void onData(String channelName, byte[] data)
{

// publish the incremental update in UI thread
await

CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, ()
=>
 {
 // log the received data parameters
 Log.d(TAG, "DATA CALLBACK: channelName = " + channelName + ", data length
= " + data.Length);
 });
 }
4-27
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 4 Cisco StadiumVision Mobile API for Windows Phone
Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples
EVS C-Cast Integration

Note Cisco StadiumVision Mobile is supported with EVS C-Cast version 2.x only. EVS C-Cast version 3.x is
not supported.

The steps below describe a high level workflow of how a Cisco StadiumVision Mobile powered C-Cast
app gains access to the XML timeline and media files. Variations are possible, for instance the file list
can be polled every few seconds via StadiumVisionMobile.objSVM.getFileChannelArray instead of
getting an event as described in Step 2 below.

1. Register an event to be notified when a C-Cast file channel becomes available. For example:
StadiumVisionMobile.objSVM.nativeAPI.fileAvailableEvent += onFileHandler;

2. Register an event to be notified when the media data file becomes available. For example:
StadiumVisionMobile.objSVM.nativeAPI.dataAvailableEvent += onDataHandler;

3. Handle the file reception (movies/thumbnails/timeline).

4. Check to see if a file channel is already available using
StadiumVisionMobile.objSVM.getFileChannelArray

5. If a channel is already available or when a callback notification is received, register a file channel
event handler.

6. Wait for the timeline to arrive via multicast on the data channel. At the same time, other files may
arrive on the file channel.

– Each time a new file arrives, perform a corresponding check to see if the new file is in the
timeline.

– If the timeline is not yet available, wait for additional files to arrive.

7. Once the timeline data has been received, parse it using the steps in chapter 5 (How to build the
media path) of the C-Cast API spec, and then build the media path for all media files. Contact James
Stellphlug (j.stellpflug@evs.com) to obtain the C-Cast API documentation.

8. For each file media path, remove the path prefix so that only the filename remains. For example:
http://www.mydomain.com/videos/abc/def/ghi/abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8
becomes
abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8

9. For each filename, cycle through until all files have been received.

10. Be prepared for the ccast-timeline.xml file to change at any time and repeat steps 6-8 whenever it
changes.
4-28
Cisco StadiumVision Mobile SDK Programmer’s Guide

mailto:j.stellpflug@evs.com

	Preface ix
	Cisco StadiumVision Mobile Introduction 1-1
	Cisco StadiumVision Mobile API for Apple iOS 2-1
	Cisco StadiumVision Mobile API for Google Android 3-1
	Cisco StadiumVision Mobile API for Windows Phone 4-1
	1
	Cisco StadiumVision Mobile Introduction

	Cisco StadiumVision Mobile Solution Overview
	Figure 1-1 Cisco StadiumVision Mobile Architecture

	Key Terms and Concepts
	Cisco Stadium Vision Mobile Media Input Types
	Table 1-1 Channel Types Supported and Use Cases
	Streaming Video Channels
	Figure 1-2 Cisco StadiumVision Mobile Streaming Video

	Streaming Audio Channels
	Figure 1-3 Cisco StadiumVision Mobile Streaming Audio

	Data Channels
	Figure 1-4 Cisco StadiumVision Mobile Data Channels

	File Channels
	Figure 1-5 Cisco StadiumVision Mobile Files Channels
	File Channel Distribution
	Generic Ingest
	EVS C-Cast Integration
	Overview
	Operation

	Content Access Control–Triplet Key
	Testing Your Cisco StadiumVision Mobile App
	Cisco StadiumVision Mobile SDK Best Practices
	Apple iOS
	Correlating Reporter Data to a Specific Device

	Google Android
	Delivering Channel Content

	Apple iOS, Google Android, and Windows Phone
	Delivering Channel Content
	Using the Latest Version of the app
	Connecting to Wi-Fi
	Table 1-2 App Guidelines for Responding to Notifications

	2
	Cisco StadiumVision Mobile API for Apple iOS
	Introduction to Cisco StadiumVision Mobile SDK for iOS
	Cisco StadiumVision Mobile and iOS Developer Tools
	Download and Unpack the SDK
	Getting Started with the iOS Sample App
	Compile the Sample App
	Customize the Sample App

	Cisco Sample app Customized Video Player
	Embed the Cisco StadiumVision Mobile SDK in an Existing App

	Integration Checklist
	Configuration Files
	Field of Use Configuration
	Wi-Fi Access Point Configuration
	How Cisco StadiumVision Mobile Fits into the iOS Framework
	Client Application Integration Overview
	iOS Model View Controller (MVC) Design Pattern
	Cisco StadiumVision Mobile iOS API Class Overview
	Video View Controller Inheritance
	Cisco StadiumVision Mobile Application Classes

	Customer Application Roles
	Cisco StadiumVision Mobile Methods and Functions for iOS

	Cisco StadiumVision Mobile iOS API Summary
	Return Status Object
	Video Player Activity API Summary
	NS Notification Events
	Video Player State Flags
	Video Player Background Audio
	Video Player Channel Inactive Callback
	Receiving Service Up and Down Notifications
	Getting the Current Service Up or Down State On Demand
	In-Venue Detection
	Receiving In-Venue Detection Notifications
	Get the Current In-Venue State On-Demand
	Set the SDK Configuration at Run-Time
	Scalable File Distribution
	Data Channels
	Adding Cisco StadiumVision Mobile Services to an iOS App—Code Structure and Samples

	Starting the SDK
	Setting the Log Level
	Getting the SDK Version String
	Displaying the Device UUID
	Shutting Down the SDK (Optional)
	Video Player View Controller Customization

	Default Cisco Video Player View Controller
	Customized Video Player
	Video Channels

	Presenting the Video Channel List
	Playing a Video Channel
	Getting the Video Channel List
	Seeking Within the Video Buffer
	Data Channels

	Getting the Data Channel List
	Observing a Data Channel
	EVS C-Cast Integration
	3
	Cisco StadiumVision Mobile API for Google Android

	Introduction to Cisco StadiumVision Mobile SDK for Android
	Table 3-1 Mobile OS Support

	Cisco StadiumVision Mobile and Android Developer Tools
	Table 3-2 Build Environment Requirements
	Requirements
	Figure 3-1 Selecting the SDK Platform Box

	Download and Unpack the SDK
	Step 1 Download StadiumVisionMobileSample-Android-VERSION.tar.bz2. If you do not have this file, contact your Cisco account team for details as to how to become part of the Cisco StadiumVision Mobile SDK partner program.
	Step 2 Extract the downloaded package into a directory. Table 3-3 lists the extracted content and includes a brief description.
	Table 3-3 Cisco StadiumVision Mobile SDK File Content

	Step 3 Open the API documentation available in the Doxygen build that is downloaded with the SDK. Navigate to the extracted folder contents, open the html folder > double-click index.html to launch the documentation in a web browser.

	Getting Started with the Android Demo App
	Compile the Demo App
	Step 1 Import the demo app project into Eclipse as follows:
	Step 2 Right-click CiscoStadiumVisionMobile in the left Package Explorer window, then select Android Tools > Export Signed Application Package.
	Step 3 Click Next when the Project Checks window appears.
	Step 4 Select Create new keystore, then browse to a folder where you wish to store the key store file. Click Next.
	Step 5 Fill in the Key Creation form (there are no right or wrong answers). Click Next.
	Step 6 Browse to the folder where you wish to place the apk file, then click Finish.
	Step 7 Download the apk file to your Android device by placing it on a web server, emailing it, SD card, or USB flash key, etc.
	Step 8 Install the apk on your device.

	Customize the Demo App
	Embed the Cisco StadiumVision Mobile SDK in an Existing App
	Integration Checklist
	Android Permissions
	SDK Native Libraries
	Android Project Classpath
	To add Java JAR files to your Eclipse project, complete the following steps:
	Step 1 Right-click your project in Eclipse.
	Step 2 Select Properties > Java Build Properties.
	Step 3 Select Add JARs.
	Step 4 Add each of the Java JAR files listed in Adding Java JAR Files in Eclipse14.
	Figure 3-2 Adding Java JAR Files in Eclipse
	App Obfuscation Using ProGuard
	Channel ListView Activity Example

	Configuration Files
	Table 3-4 Configuration Files

	Wi-Fi AP Info Configuration (Optional)

	How Cisco StadiumVision Mobile Fits into the Android Framework
	Android API Class Overview
	Figure 3-3 StadiumVision Mobile Class
	Android OS Activity Overview
	Figure 3-4 Android Activity Overview
	Figure 3-5 Android Video Player Activity Inheritance

	Client Application Integration Overview
	Figure 3-6 Cisco StadiumVision Mobile Integration Overview

	Customer Application Roles
	Figure 3-7 Customer Application Responsibilities

	Cisco StadiumVision Mobile Methods and Functions for Android
	Cisco StadiumVision Mobile Android API Summary
	Table 3-5 Cisco StadiumVision Mobile Android API Summary
	Return Status Object
	Table 3-6 SVMStatus Object
	Table 3-7 getStats API Hash Keys and Description

	Video Player Activity API Summary
	Table 3-8 Video Player Activity API Summary

	Adding Cisco StadiumVision Mobile Services to an Android App—Code Structure and Samples
	Start the SDK
	Notify Life-Cycle Activity
	Indicate StadiumVision Mobile Service: Up or Down
	Table 3-9 Service Down Notifications
	Receiving "Service Up/Down" Notifications
	Getting the Current "Service Up/Down" State On-Demand

	Detect Mobile Device Connection
	Receiving "In-Venue Detection" Notifications
	Getting the Current "In-Venue" State On-Demand

	Set the SDK Configuration at Run-Time
	Scalable File Distribution
	Table 3-10 Scalable File Distribution and Service API Summary

	Data Channels
	Table 3-11 Data Distribution and Service API Summary

	Get the SDK Configuration
	"getConfig" API Method

	Set SDK Configuration using setConfigWithString API Method
	Get the Available Streamer Servers
	Table 3-12 SVMStreamer Object Properties

	Obtain Additional Statistics
	Table 3-13 StatsManager Dictionary Keys

	Receive Video Player State Notifications
	Table 3-14 Video Player State Notification

	Detect Video Player "Channel Inactive" Callback
	Customizing the Default Video Player
	Figure 3-8 Default Cisco Video Player
	Figure 3-9 SVMVideoPlayerActivity API
	Cisco Demo Video Player

	Video Channels
	Getting the Video Channel List
	Presenting the Video Channel List
	Table 3-15 SVMChannel Object Properties

	Playing a Video Channel
	Seeking Within the Video Buffer
	Setting the Video Dimensions
	Fullscreen Video Layout
	Partial-Screen Video Layout

	Data Channels
	Getting the Data Channel List
	Observing a Data Channel

	Audio Channels
	Getting the Audio Channel List

	EVS C-Cast Integration

	4
	Cisco StadiumVision Mobile API for Windows Phone
	Introduction to Cisco StadiumVision Mobile SDK for Windows Phone
	Cisco StadiumVision Mobile and Windows Developer Tools
	Download and Unpack the SDK
	Getting Started with the Windows Demo App
	Compile the Demo App
	Customize the Demo App
	Embed the Cisco StadiumVision Mobile SDK in an Existing App

	Integration Checklist
	Window Life-Cycle Notifications
	Configuration
	Wi-Fi AP Info Configuration (Optional)
	How Cisco StadiumVision Mobile Fits into a Windows Phone App
	Cisco StadiumVision Mobile Class Overview

	Customer Application Roles
	Cisco StadiumVision Mobile Methods and Functions for Windows

	Cisco StadiumVision Mobile Windows API Summary
	Return Status Object
	Video Player Window API Summary
	Adding Cisco StadiumVision Mobile Services to a Windows App—Code Structure and Samples

	Starting the SDK
	Cisco StadiumVision Mobile Service Up or Down Indicator
	Receiving "Service Up/Down" Notifications
	Get the Current "Service Up / Down" State On-Demand
	In-Venue Detection
	Receiving "In-Venue Detection" Notifications
	Get the Current "In-Venue" State On-Demand
	Set the SDK Configuration at Run-Time
	Get the SDK Configuration
	setConfigWithString API Method
	Get the Available Streamer Servers
	Additional Statistics
	Video Player State Notifications
	Video Player "Channel Inactive" Event
	Customizing the Default Video Player

	Cisco Demo Video Player
	Video Channels

	Getting the Video Channel List
	Presenting the Video Channel List
	Playing a Video Channel
	Seeking Within the Video Buffer
	Setting the Video Dimensions
	Data Channels

	Getting the Data Channel List
	Observing a Data Channel
	EVS C-Cast Integration

