CISCO

Cisco GainStar Amplifier Modules and Pedestal Housings

Installation and Operation Guide

Explanation of Warning and Caution Icons

🔔 🗍 Avoid personal injury and product damage! Do not proceed beyond any $\bigtriangleup \oplus \bigstar$ symbol until you fully understand the indicated conditions.

> The following warning and caution icons alert you to important information about the safe operation of this product:

product. This symbol indicates important operating or maintenance instructions.

You may find this symbol affixed to the product. This symbol indicates a live terminal where a dangerous voltage may be present; the tip of the flash points to the terminal device.

 $(\underline{-})$ You may find this symbol affixed to the product. This symbol indicates a protective ground terminal.

h You may find this symbol affixed to the product. This symbol indicates a chassis terminal (normally used for equipotential bonding).

<u>/</u><u>\$</u> You may find this symbol affixed to the product. This symbol warns of a potentially hot surface.

A A You may find this symbol affixed to the product and in this document. This symbol indicates an infrared laser that transmits intensity-modulated light and emits invisible laser radiation or an LED that transmits intensitymodulated light.

Important

Please read this entire guide. If this guide provides installation or operation instructions, give particular attention to all safety statements included in this guide.

Trademark Acknowledgments

Cisco, Cisco Systems, the Cisco logo, the Cisco Systems logo, and ROSA are trademarks or registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries.

All other trademarks mentioned in this document are property of their respective owners.

Publication Disclaimer

Cisco Systems, Inc., assumes no responsibility for errors or omissions that may appear in this publication. We reserve the right to change this publication at any time without notice. This document is not to be construed as conferring by implication, estoppel, or otherwise any license or right under any copyright or patent, whether or not the use of any information in this document employs an invention claimed in any existing or later issued patent.

Copyright

© 2010 Cisco Systems, Inc. All rights reserved.

Information in this publication is subject to change without notice. No part of this publication may be reproduced or transmitted in any form, by photocopy, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, for any purpose, without the express permission of Cisco Systems, Inc.

Contents

mportant Safety Instructionsvi		
Chapter 1	Introduction	
1	GainStar Amplifier Characteristics	
	ROSA Supported	1-3
	Power Supply	1-3
	Input and Output Ports	1-3
	Configuration	1-4
	Test Points	1-4
	AC Shunt Power Directors	1-4
	GainStar Amplifier Ordering Matrix	1-5
Accessories		1-6
	Customer Installable Accessories for Amplifiers	1-6
Illustrations	-	1-7
	GainStar Amplifier Test Points	1-7
	GainStar Amplifier Accessories	1-8
Block Diagr	ams	
	GainStar Amplifier Modules	1-9
Chapter 2	Installation and Configuration	
Before You	begin	2-2
	Required Tools	2-2
	Torque Specifications	2-2
	RF Module Cover	2-3
	Housing Lid	2-3
	Housing Base	2-3
	Housing Dimensions	2-4
Opening the	e Amplifier Housing	2-5
	To Open the Amplifier Housing	2-5
Attaching th	ne Coaxial Connectors	2-6
	To Prepare the Base Housing	2-6
	To Trim the Center Conductor	2-7
	To Connect the RF Connector Pin	2-8
Installing th	e Housing	2-9
	To Install the Housing on a Strand (Aerial)	2-9

Contents, Continued

	To Install the Housing in a Pedestal	2-10
Installing th	e Accessories	
U	To Install Attenuator Pads	
	To Install the Equalizers	2-12
	To Set Up RF output Port	2-14
Installating	the RF Module	2-15
To Install the RF Module		2-15
Removing a	nd Installing the AC Shunt	2-17
	System Power	2-17
	AC Shunt	2-18
Removing th	he RF Module from the Housing	2-19
	To Remove the RF Module	2-19
Closing the	Amplifier Housing	2-21
	To Close the Amplifier Housing	2-21
Chapter 3	Balancing and Setup	
Preparing fo	or Forward Path Balancing	
	Before You Begin	
Balancing th	ne Forward Path	
	Introduction	
	To Verify the Forward Input Level	
	To Determine the Output Tilt	
	To Set Up the Output Tilt	
	To Set Up the Forward Output Level	
Balancing th	ne Reverse Path	
	To Set Up the Reverse Input Level	
	To Set Up the Reverse Output Level	3-10
	To Set Up the Equalizer for Reverse Path	
Upgrading f	the Amplifier to a Node	3-15
	Introduction	3-15
	To Disconnect the GainStar Amplifier Lid	3-15
	To Install the GainStar Node Lid	

Contents, Continued

Chapter 4 Trouble Shooting

Equipment	4-2
No Forward RF Signal	
Low or Degraded Forward RF Signal	4-4
No Reverse RF Signal	
Low or Degraded Reverse RF Signal	
No Power Supply	

Chapter 5 Customer Support Information

Obtaining Product Support	5-2
Support Telephone Numbers	5-2

Chapter 6 Technical Information

Forward Cable Equalizer	6-2
Forward Inverse Cable Equalizer	6-4
Reverse Cable Equalizer	6-6
GainStar Amplifier Accessories Part Numbers	6-8

Important Safety Instructions

Read and Retain Instructions

Carefully read all safety and operating instructions before operating this equipment, and retain them for future reference.

Follow Instructions and Heed Warnings

Follow all operating and use instructions. Pay attention to all warnings and cautions in the operating instructions, as well as those that are affixed to this equipment.

Terminology

The terms defined below are used in this document. The definitions given are based on those found in safety standards.

Service Personnel-The term service personnel applies to trained and qualified individuals who are allowed to install, replace, or service electrical equipment. The service personnel are expected to use their experience and technical skills to avoid possible injury to themselves and others due to hazards that exist in service and restricted areas.

User and Operator-The terms user and operator apply to persons other than service personnel.

Ground(ing) and Earth(ing)-The terms ground(ing) and earth(ing) are synonymous. This document uses ground(ing) for clarity, but it can be interpreted as having the same meaning as earth(ing).

Electric Shock Hazard

This equipment meets applicable safety standards. Refer to this equipment's data sheet for details about regulatory compliance approvals.

\land WARNING:

Avoid electric shock! Opening or removing the equipment cover may expose you to dangerous voltages. Refer all servicing to qualified service personnel only.

Electric shock can cause personal injury or even death. Avoid direct contact with dangerous voltages at all times.

Know the following safety warnings and guidelines:

- Only qualified service personnel are allowed to perform equipment installation or replacement.
- Only qualified service personnel are allowed to remove equipment covers and access any of the components inside the chassis.

Continued on next page

Important Safety Instructions

Equipment Placement

\rm WARNING:

Avoid personal injury and damage to this equipment. An unstable mounting surface may cause this equipment to fall.

To protect against equipment damage or injury to personnel, comply with the following:

Install this equipment in a restricted access location (access restricted to service personnel).

Make sure the mounting surface or rack is stable and can support the size and weight of this equipment.

Strand (Aerial) Installation

CAUTION:

Be aware of the size and weight of strand-mounted equipment during the installation operation.

Ensure that the strand can safely support the equipment's weight.

Pedestal Installation

🔔 WARNING:

Avoid possibility of personal injury. Ensure proper handling/lifting techniques are employed when working in confined spaces with heavy equipment.

Ensure this equipment is securely fastened to the mounting surface or rack where necessary to protect against damage due to any disturbance and subsequent fall.

Ensure the mounting surface or rack is appropriately anchored according to manufacturer's specifications.

Ensure the installation site meets the ventilation requirements given in the equipment's data sheet to avoid the possibility of equipment overheating.

Ensure the installation site and operating environment is compatible with the equipment's International Protection (IP) rating specified in the equipment's data sheet.

Connecting to Utility AC Power

Important: If this equipment is a Class I equipment, it must be grounded.

If this equipment plugs into an outlet, the outlet must be near this equipment, and must be easily accessible.

Connect this equipment only to the power sources that are identified on the equipment-rating label, which is normally located close to the power inlet connector(s).

Continued on next page

- This equipment may have two power sources. Be sure to disconnect all power sources before working on this equipment.
- If this equipment **does not** have a main power switch, the power cord connector serves as the disconnect device.
- Always pull on the plug or the connector to disconnect a cable. Never pull on the cable itself.

Connection to Network Power Sources

Refer to this equipment's specific installation instructions in this manual or in companion manuals in this series for connection to network ferro-resonant AC power sources.

AC Power Shunts

AC power shunts may be provided with this equipment.

Important: The power shunts (where provided) must be removed before installing modules into a powered housing. With the shunts removed, power surge to the components and RF-connectors is reduced.

CAUTION:

RF connectors and housing seizure assemblies can be damaged if shunts are not removed from the equipment before installing or removing modules from the housing.

Grounding (Utility AC Powered Equipment in Pedestals, Service Closets, etc.)

This section provides instructions for verifying that the equipment is properly grounded.

Safety Plugs (USA Only)

This equipment is equipped with either a 3-terminal (grounding-type) safety plug or a 2-terminal (polarized) safety plug. The wide blade or the third terminal is provided for safety. Do not defeat the safety purpose of the grounding-type or polarized safety plug.

To properly ground this equipment, follow these safety guidelines:

Grounding-Type Plug

For a 3-terminal plug (one terminal on this plug is a protective grounding pin), insert the plug into a grounded mains, 3-terminal outlet.

Note: This plug fits only one way. If this plug cannot be fully inserted into the outlet, contact an electrician to replace the obsolete 3-terminal outlet.

Polarized Plug

For a 2-terminal plug (a polarized plug with one wide blade and one narrow blade), insert the plug into a polarized mains, 2-terminal outlet in which one socket is wider than the other.

Note: If this plug cannot be fully inserted into the outlet, try reversing the plug.

Important Safety Instructions, Continued

If the plug still fails to fit, contact an electrician to replace the obsolete 2-terminal outlet.

Grounding Terminal

If this equipment is equipped with an external grounding terminal, attach one end of

an 18-gauge wire (or larger) to the grounding terminal; then, attach the other end of the wire to a ground, such as a grounded equipment rack.

Safety Plugs (European Union)

Class I Mains Powered Equipment

Provided with a 3-terminal AC inlet and requires connection to a 3-terminal mains supply outlet via a 3-terminal power cord for proper connection to the protective ground.

Note: The equipotential bonding terminal provided on some equipment is not designed to function as a protective ground connection.

Class || Mains Powered Equipment

Provided with a 2-terminal AC inlet that may be connected by a 2-terminal power cord to the mains supply outlet. No connection to the protective ground is required as this class of equipment is provided with double or reinforced and/or supplementary insulation in addition to the basic insulation provided in Class I equipment.

Note: Class II equipment, which is subject to EN 50083-1, is provided with a chassis mounted equipotential bonding terminal. See the section titled Equipotential Bonding for connection instructions.

Equipotential Bonding

If this equipment is equipped with an external chassis terminal marked with the IEC 60417-5020 chassis icon (,,), the installer should refer to CENELEC standard EN 50083-1 or IEC standard IEC 60728-11 for correct equipotential bonding connection instructions.

Continued on next page

General Servicing Precautions

WARNING:

Avoid electric shock! Opening or removing the equipment cover may expose you to dangerous voltages. Refer all servicing to qualified service personnel only.

CAUTION:

These servicing precautions are for the guidance of qualified service personnel only. To reduce the risk of electric shock, do not perform any servicing other than contained in the operating instructions unless you are qualified to do so. Refer all servicing to qualified service personnel.

Be aware of the following general precautions and guidelines:

- Servicing Servicing is required when this equipment has been damaged in any way, such as power supply cord or plug is damaged, liquid has been spilled or objects have fallen into this equipment, this equipment has been exposed to rain or moisture, does not operate normally, or has been dropped.
- Wristwatch and Jewelry For personal safety and to avoid damage of this equipment during service and repair, do not wear electrically conducting objects such as a wristwatch or jewelry.
- Lightning Do not work on this equipment, or connect or disconnect cables, during periods of lightning.
- Labels Do not remove any warning labels. Replace damaged or illegible warning labels with new ones.
- Covers Do not open the cover of this equipment and attempt service unless instructed to do so in the instructions. Refer all servicing to qualified service personnel only.
- Moisture Do not allow moisture to enter this equipment.
- Cleaning Use a damp cloth for cleaning.
- Safety Checks After service, assemble this equipment and perform safety checks to ensure it is safe to use before putting it back into operation.

Electrostatic Discharge

Electrostatic discharge (ESD) results from the static electricity buildup on the human body and other objects. This static discharge can degrade components and cause failures.

Take the following precautions against electrostatic discharge:

- Use an anti-static bench mat and a wrist strap or ankle strap designed to safely ground ESD potentials through a resistive element.
- Keep components in their anti-static packaging until installed.
- Avoid touching electronic components when installing a module.

Continued on next page

Fuse Replacement

To replace a fuse, comply with the following:

- Disconnect the power before changing fuses.
- Identify and clear the condition that caused the original fuse failure.
- Always use a fuse of the correct type and rating. The correct type and rating are indicated on this equipment.

Modifications

This equipment has been designed and tested to comply with applicable safety, laser safety, and EMC regulations, codes, and standards to ensure safe operation in its intended environment. Refer to this equipment's data sheet for details about regulatory compliance approvals.

Do not make modifications to this equipment. Any changes or modifications could void the user's authority to operate this equipment.

Modifications have the potential to degrade the level of protection built into this equipment, putting people and property at risk of injury or damage. Those persons making any modifications expose themselves to the penalties arising from proven non-compliance with regulatory requirements and to civil litigation for compensation in respect of consequential damages or injury.

Accessories

Use only attachments or accessories specified by the manufacturer.

Chapter 1 Introduction

Overview

The GainStar Amplifier Platform includes a variety of RF amplifiers that address the divergent needs of today's broadband networks. All GainStar amplifiers provide superior performance and reliability combined with a user-friendly layout.

This chapter introduces the GainStar Amplifier and describes its main components, configuration options, and accessories.

Purpose

This guide provides instructions for installing, configuring, setting up, and troubleshooting the GainStar Amplifier.

Who Should Use This Document

This document is intended for authorized service personnel who have experience working with similar equipment. The service personnel should have appropriate background and knowledge to complete the procedures described in this document.

Qualified Personnel

CAUTION:

Allow only qualified and skilled personnel to install, operate, maintain, and service this product. Otherwise, personal injury or equipment damage may occur.

Only appropriately qualified and skilled personnel should attempt to install, operate, maintain, and service this product.

Scope

This guide discusses the following topics.

- Description of the GainStar Amplifier
- Installing and Configuring the amplifier
- Balancing and Setup of Amplifier Forward and Reverse Signal Paths
- Troubleshooting the amplifier
- Customer Support nformation
- Description of Configuration Options and Accessories

Document Version

This is the first release of this guide (Rev A).

Overview, Continued

In This Chapter

Торіс	See Page
Description	1-3
Accessories	1-6
Illustrations	1-7
Block Diagrams	1-9

Description

The GainStar amplifier is available in the following forward bandwidth.

• 1 GHz/862 MHz

The GainStar amplifier is available in the following reverse/forward path splits.

- 42/54 MHz
- 65/87 MHz

All 1 GHz GainStar amplifiers are composed of a base and a lid. The lid houses the power supply. The base houses the RF modules, and also the Amplifier Cover.

The following chapters provide a detailed description of GainStar components and RF modules.

GainStar Amplifier Characteristics

The GainStar amplifier modules have the following characteristics.

- Can be set up for 862 MHz or 1 GHz performance
- Modular design for ease of service and maintenance
- Dual high-level RF output ports
- Each high-level RF output port is configurable with a signal director to create two lower-level output ports
- Standard attenuators can be used to adjust gain and equalization settings
- Field upgradable from an amplifier to a node
- Surge-resistant circuitry ensures resistance to high voltage transients
- Thermal RF control minimizes gain movement over temperature
- AC circuitry provides 10 A of steady state current and temporarily withstands 15A of peak over-current
- Supports ROSA network management system
- Outdoor housing is IP68 dust proof and water tight
- Strand and pedestal mount housing configurations are available
- All ports accept PG11 connectors or 5/8" connectors using provided adapters
- RoHS 6/6 compliant

ROSA Supported

Manage your network with ROSA and TNCS open standards element management. Get faster mean-time-to-repair, increased uptime, and management that evolves as you provision your networks. www.saeurope.com/solutions/rosa

Power Supply

The available input power voltages for the GainStar amplifier are 44 VAC to 90 VAC quasi-square wave.

Input and Output Ports

This amplifier has one input port and two or four ports. The number of output ports is determined by the signal director.

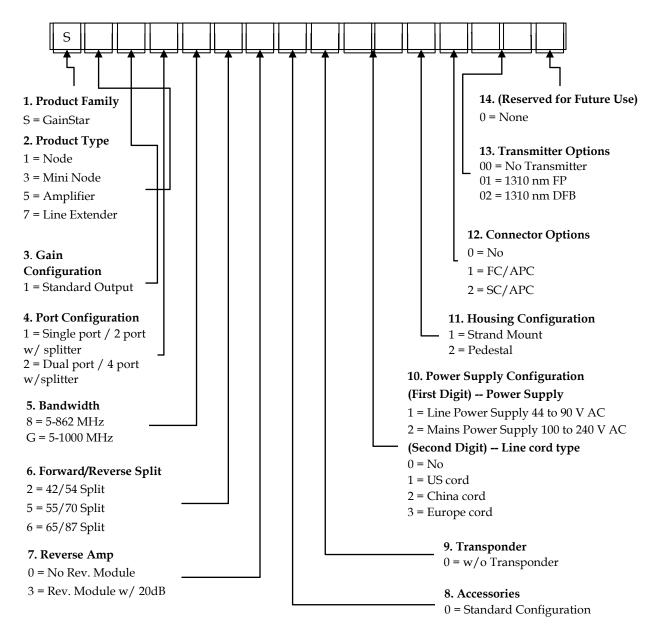
Description, Continued

Configuration

All GainStar amplifier modules are configured with the following items:

- Diplexer Filters
- Forward interstage attenuator
- Forward output equalizer with attenuator
- Forward output attenuators
- Signal directors
- 3-State switch jumper
- Reverse amplifier module (not included in forward only configuration)
- Reverse equalizer with attenuator (not included in forward only configuration)

Test Points


There are six RF test points on the GainStar amplifier.

AC Shunt Power Directors

The GainStar amplifier has five AC shunt power directors located near the ports of the amplifier. These power directors are used to direct AC current to and from the amplifier input and output ports.

GainStar Amplifier Ordering Matrix

For the latest available amplifier ordering information, contact your customer service representative.

Accessories

Customer Installable Accessories for Amplifiers

The GainStar amplifier is equipped to work with the following accessories.

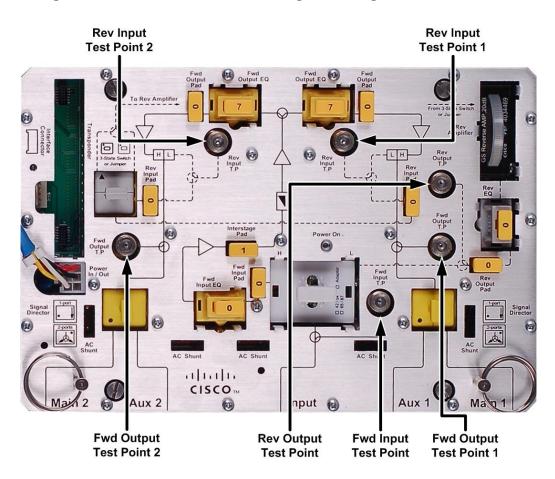
The following table lists the customer installable accessories and their part numbers.

Note: All GainStar amplifier accessories are unique to the GainStar Amplifier Platform product line.

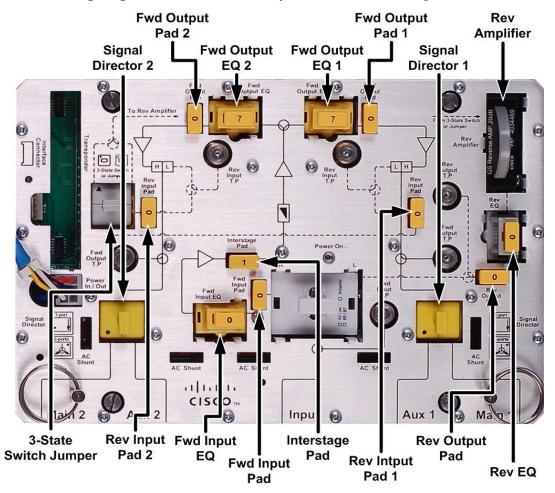
Accessory	Part Number	Quantity	
Attenuator pads	4036021 (0 dB) through	1 required for forward input	
	4036041 (20 dB), 0 dB through 20 dB in 1 dB increments	2 required for reverse inputs (Not included in forward only configuration)	
		1 required for reverse output (Not included in forward only configuration)	
Forward Cable	4034453, 0 to 4 dB	1 required for forward input; 1	
Equalizer 1 GHz	4034454, 5 to 9 dB	Pad also required and plugged into EQ	
	4034455, 10 to 14 dB		
Forward Cable	4034450, 0 to 4 dB		
Equalizer 862 MHz	4034451, 5 to 9 dB		
	4034452, 10 to 14 dB		
Forward Inverse EQ 87	4035732, 0 to 4 dB		
MHz	4035733, 5 to 9 dB		
	4035734, 10 to 14 dB		
Forward Inverse EQ 54	4035729, 0 to 4 dB		
MHz	4035730, 5 to 9 dB		
	4035731, 10 to 14 dB		
Reverse Cable Equalizer	4034462, 0 to 5 dB	0 to 5 dB EQ (4034462 or	
65 MHz	4034463, 6 to 10 dB	4034465) and 0 dB Pad (4036021) are	
Reverse Cable Equalizer	4034465, 0 to 5 dB	provided – Other values must	
42 MHz	4034466, 6 to 10 dB	be ordered. (Not included in forward only configuration)	

Note: When upgrading from forward only to a forward and reverse, the Reverse Amplifier Module, Reverse Equalizer with PAD, Reverse input PAD, and Reverse output PAD accessories are required.

Introduction

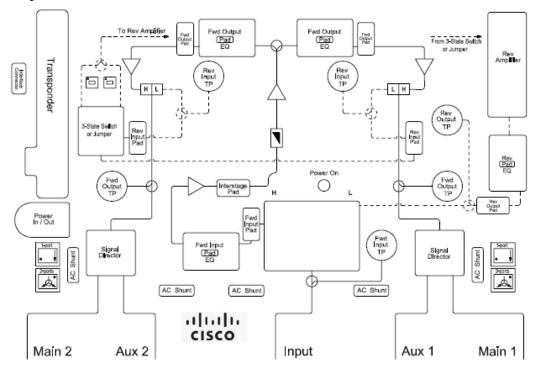

Illustrations

GainStar Amplifier Test Points


The following diagram shows the Amplifier Module test points.

Note:

- Test point shown is -20 dB for Forward input RF test point.
- Test points shown are -20 dB/-16.5 dB (with signal director) for Forward output RF test points.
- Test points shown are -20 dB/-23.5 dB (with signal director) for Reverse input RF test points.
- Test point shown is -20 dB for Reverse output RF test point.


GainStar Amplifier Accessories

The following diagram shows the accessory locations for the Amplifier module.

GainStar Amplifier Module

The following block diagram shows the forward and reverse path of the GainStar Amplifier.

Chapter 2 Installation and Configuration

Overview

Introduction

This chapter provides instructions for installing and configuring the GainStar amplifier in your cable system.

In This Chapter

Topic	See Page
Before You Begin	2-2
Opening the Amplifier Housing	2-5
Attaching the Coaxial Connectors	2-6
Installing the Housing	2-9
Installing the Accessories	2-11
Installing the RF Module	2-15
Removing and Installing the AC Shunt	2-17
Removing the RF Module from the Housing	2-19
Closing the Amplifier Housing	2-21

The procedures in this chapter assume that you have completed the following:

- Prepared the installation site
- Located the coaxial cable, with or without pin-type coaxial connectors mounted on the cable

Required Tools

Before you start, make sure that you have the following tools:

- Torque wrench with a 1/2-inch socket
- Flat-blade screwdriver
- Heavy-duty wire cutters or snips
- Torque wrench set

Torque Specifications

The following table gives the torque specifications for the Amplifier.

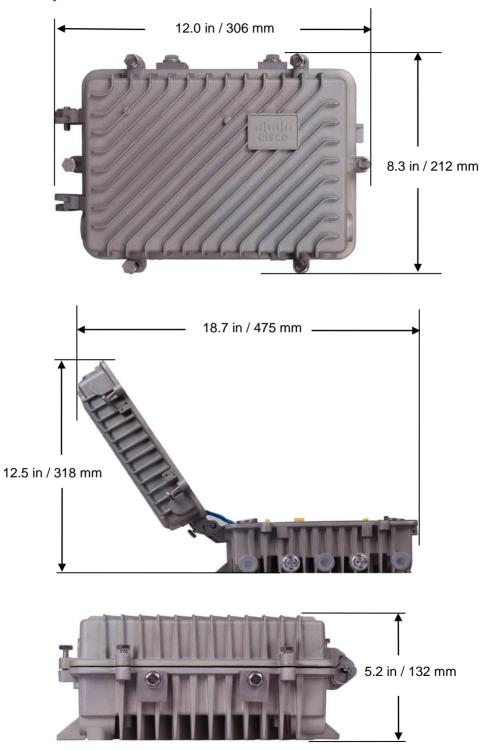
Fastener	Torque Specification	Illustration
Seizure nut	2.0 Nm to 2.8 Nm	6
Housing Retainer Screws	1.5 Nm to 1.8 Nm	
Housing closure bolts	6.8 Nm to 9.0 Nm	
Housing plugs test point port plugs	6.8 Nm to 9.0 Nm	
RF PG11 to 5/8" adapter	12.0 Nm to 16.0 Nm	
Strand clamp mounting bracket bolts	6.8 Nm to 9.0 Nm	
RF F-Cable Connector	Per manufacturer instructions	
HardLine Cable Connector	Per manufacturer instructions	1.10

Before You Begin, Continued

RF Module Cover

The GainStar amplifier module has an aluminum cover attached. To perform normal field maintenance, the cover will not have to be removed.

Housing Lid

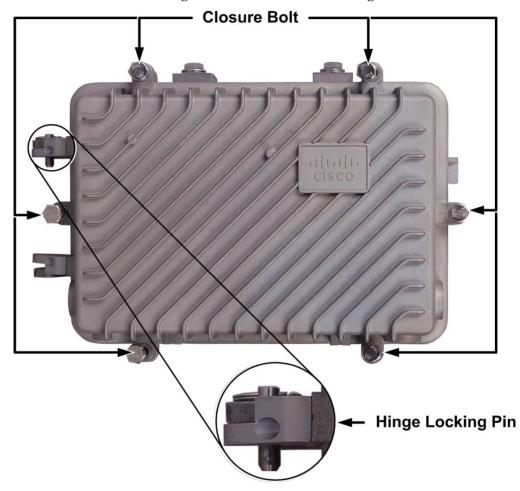

The GainStar amplifier module is compatible with the GainStar housing lid only. This housing lid will not work with the GainStar Node.

Housing Base

The GainStar amplifier module is compatible with the GainStar housing base. This housing base will also work with the GainStar node.

Housing Dimensions

The diagram below shows the dimensions, in inches and millimeters of the system amplifier housing with a standard lid. Use these measurements to calculate clearance requirements for your installation.



To Open the Amplifier Housing

Complete the following steps to open the Amplifier housing.

Important: Before unscrewing the housing bolts, make sure the removable hinge locking pin is in place. The hinge locking pin prevents separation of the lid from the base.

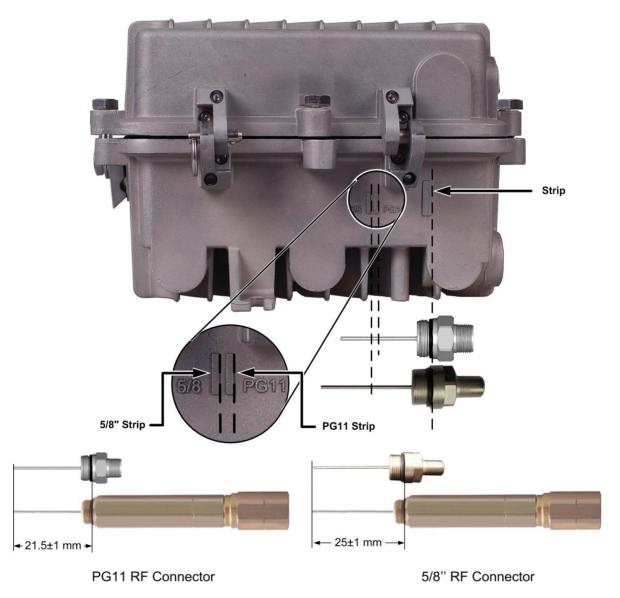
1 Loosen the $\frac{1}{2}$ -inch housing closure bolts on the housing lid.

2 Open the housing.

Note: The closure bolts should remain attached to the housing.

To Prepare the Base Housing

- 1 If an RF module is installed in the housing, you must remove it before installing the connectors. Refer to *Removing the RF Module from the Housing* (on page 2-19).
- 2 Using a ½ in. nut driver, loosen the seizure nuts from the housing. See the diagram below.


Seizure Nuts

To Trim the Center Conductor

Complete the following steps to trim longer pins.

- 1 Place the connector above the entry port so that it lines up with its installed position.
- 2 The GainStar Amplifier requires pin-type connectors for all RF connections. The 5/8" RF connector will be needed for pins extending from 24 mm to 26 mm (0.9 in. to 1.0 in). The PG11 RF connector will be needed for pins extending 20.5 mm to 22.5 mm (0.8 in. to 0.9 in). You must trim longer pins before inserting them into the housing.

If the center conductor pin extends past the STRIP line on the housing, trim the pin flush to the STRIP line. The following diagram shows a visual guide of the center conductor trim length.

To Connect the RF Connector Pin

Complete the following steps to connect the RF connector pin to the Amplifier housing.

- 1 Begin this procedure with the amplifier housing open. Refer to *To Open the Amplifier Housing* (on page 2-5).
- 2 If the center conductor pin extends beyond the STRIP line on the housing, trim the pin with heavy-duty wire cutters.
- 3 If the RF connector is PG11, go to Step 4. If the RF connector is 5/8", screw the RF cable connector adapter onto the housing before proceeding to Step 4.
- 4 Insert the appropriate RF connector into the housing at the desired RF port. Tighten the connector nut according to manufacturer specifications.
- 5 Tighten the seizure nut from 2.0 Nm to 2.8 Nm.
- 6 Repeat steps 2 through 4 for each RF port used.
- 7 Check for the presence of RF at an unused port.
 - a) If RF is present, insert a 75 Ohm housing terminator into the port and tighten per manufacturer specifications.
 - b) If RF is not present, insert a housing plug into the port and tighten from 6.8 Nm to 9.0 Nm.

8 Proceed to *Installing the Housing* (on page 2-9).

To Install the Housing on a Strand (Aerial)

Complete the following steps to install the housing on a strand (aerial). The housing does not need to be opened for strand installation.

Important: The minimum strand diameter should be 5/16 inch.

<u>CAUTION:</u>

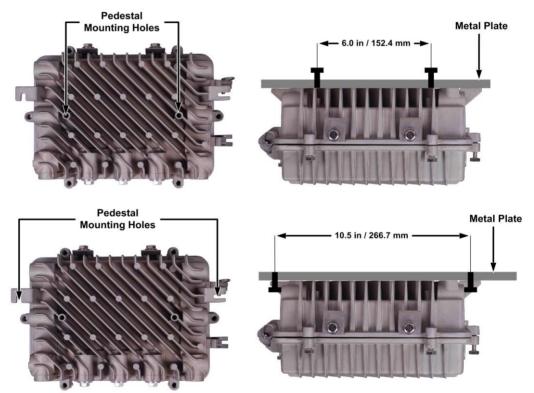
Be aware of the size and weight of the housing while strand mounting. Ensure that the strand can safely support the weight of the housing.

- 1 Loosen the strand clamp bolts.
- 2 Lift the housing into proper position on the strand.
- 3 Slip the strand clamps over the strand and finger-tighten the clamp bolts. This allows additional movement of the housing as needed.
- 4 Move the housing as needed to install the coaxial cable and connectors. See the diagram below.

5 Using a ¹/₂-inch torque wrench, tighten the strand clamp bolts from 6.8 Nm to 9.0 Nm. Make sure there is good mechanical contact between the strand and the housing.

Note: A slight tilt of the face of the housing is normal. Cable tension will cause the housing to hang more closely to vertical.

- 6 Connect the coaxial cable to the pin connector according to connector manufacturer specifications.
- 7 Proceed to *Installing Accessories* (on page 2-11).


To Install the Housing in a Pedestal

Complete the following steps to install the housing in a pedestal. **Important:** The minimum strand diameter should be 5/16 inch.

✓! CAUTION:

Be aware of the size and weight of the housing while strand mounting. Ensure that the strand can safely support the weight of the housing.

- 1 Drill two 3/8" holes in the mounting plate with 152.4 mm or 266.7 mm distance. The thickness of the metal plate is 10 to 15 mm.
- 2 Lift the housing to proper position on the wall or box.
- 3 Align the pedestal mounting holes on the bottom of the housing with the drilled two holes in the metal plate and insert the bolts into the two threaded mounting holes.

4 Using a ¹/₂-inch torque wrench, tighten the Pedestal clamp bolts from 6.8 Nm to 9.0 Nm.

Note: A slight tilt of the face of the housing is normal. Cable tension will cause the housing to hang more closely to vertical.

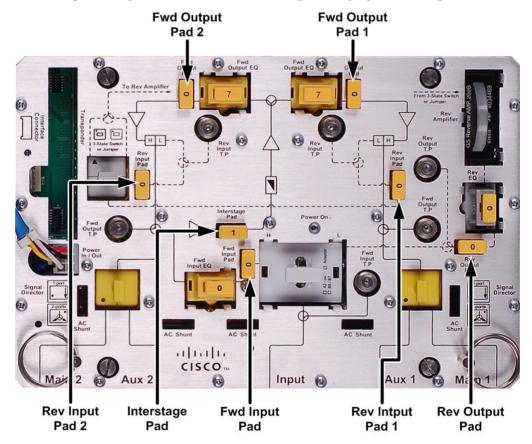
- 5 Connect the coaxial cable to the pin connector according to connector manufacturer specifications.
- 6 Proceed to *Installing Accessories* (on page 2-11).

To Install Attenuator Pads

Complete the following steps to install the attenuator pads in the amplifier.

Note: For best results, follow this installation procedure exactly.

1 Begin this procedure with the housing open. Refer to *Opening the Amplifier Housing* (on page 2-5).


Note: These accessories can be installed without removing the cover.

2 Install the pad(s) specified by the design print in the appropriate pad slot(s).

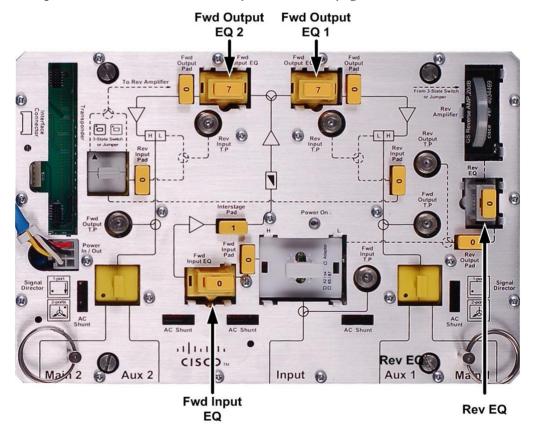
Note:

Be sure that all the pins on the attenuator pad bottom align with the pin holes in the attenuator pad slot, allowing the attenuator pad to install flat against the RF module.

The forward output pad and forward interstage pad (1 GHz: 1dB; 862 MHz: 0dB) are installed at the factory to set the operational gain of the station. Do not change these pads in the field unless required by system design.

3 Install other options or accessories as desired.

To Install the Equalizers


Complete the following steps to install the equalizers in the amplifier.

Note: For best results, follow this installation procedure exactly.

1 Begin this procedure with the housing open. Refer to *Opening the Amplifier Housing* (on page 2-5).

Note: These accessories can be installed without removing the amplifier cover.

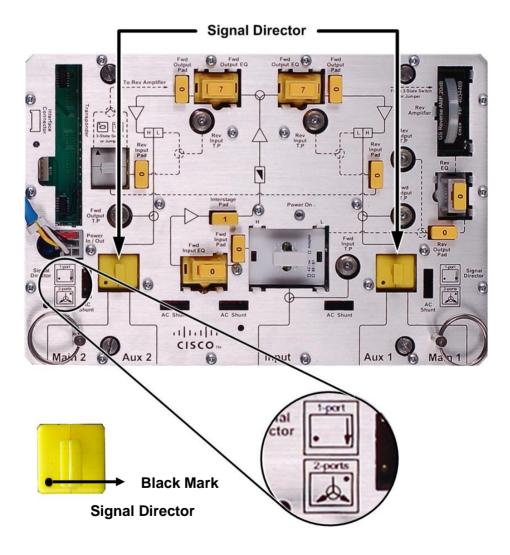
2 Install the forward input equalizer specified by the design print in the forward input equalizer slot. Or, install the correct inverse equalizer specified by the design print for your system in the forward input equalizer slot. EQ values can be set up by adjusting the pad. Detailed instructions on tilt value set up can be found on page 3-4. For a list of available accessory pad values and part numbers, see *Technical Information* (*on page 6-1*).

Note:

Be sure that all the pins on the forward input equalizer or inverse equalizer bottom align with the pin holes in the equalizer slot, allowing the equalizer to install flat against the RF module.

The same inverse equalizers are used for either 862 MHz or 1 GHz band.

The forward output equalizer and pad (1 GHz: 7 dB; 862 MHz: 6 dB) are factory-installed, and should not be changed in the field.


The forward output equalizer and an on-board equalizer combine to generate the total internal tilt for the station. The forward output equalizer value is different from the 1 GHz, or 862 MHz platform, in order to achieve optimum performance.

- 3 Install the reverse equalizer specified by the design print in the reverse equalizer slot. The default factory reverse tilt is set at 0 dB. For the exact location of the reverse equalizer, refer to the illustration on previous page. For a list of available reverse equalizers, see *Technical Information* (on page 6-1).
- 4 Install other options or accessories as desired.

To Set up RF output port

Follow these steps to test the GainStar Amplifier.

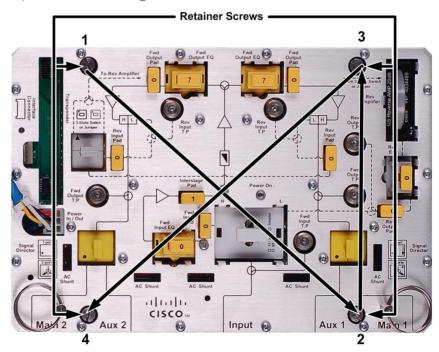
- 1 Factory default is two output ports (Main 1 and Main 2 shown below).
- 2 Before powering the GainStar Amplifier, make sure all accessories are installed and properly seated.
- 3 Make sure the unit is properly connected to the power supply. Refer to *System Power* (on page 2-17).
- 4 For 2 high-level outputs, RF output Main 1 and Main 2 are the active ports. Make sure a signal director (SD) is installed in the position marked "Signal Director" on the amplifier. The following diagram shows how to use the signal director.
- 5 For four outputs, Main 1, Main 2, Aux 1 and Aux 2 are active ports.

The RF module plugs into the strand-mounted housing via RF connectors on the bottom side of the module.

To Install the RF Module

Complete the following steps to install the RF module.

\triangle CAUTION:

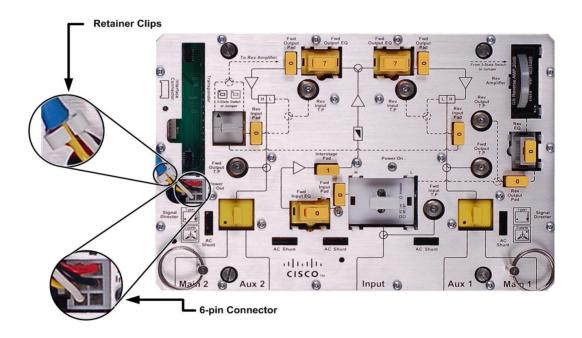

RF connectors and housing seizure assemblies can be damaged if AC shunt power directors are not removed from the amplifier before installing or removing the RF module from the housing.

1 Perform the following if you are working with an amplifier station where AC is present.

Install the AC shunt power directors in the amplifier after you install the RF module in the housing.

Remove the AC shunt power directors from the amplifier before you remove the RF module from the housing.

- 2 Orient the RF module so the **Input**, **Main**, **and Aux** output ports (the locations of which are stamped on the module cover) are in the proper corners for your installation.
- 3 Line up the RF connectors on the RF module and the housing. Push the RF module into the housing.
- 4 Secure the RF module to the housing by tightening the four system RF module retainer screws. Tighten the module retainer screws from 1.5 Nm to 1.8 Nm). See the following illustration for the location of the retainer screws.



- 5 Snap the power cable harness into place.
- 6 Attach the 6-pin keyed connector of the power cable and harness to the RF module.

Note: The 6-pin connector can be connected one way only. Make sure the connector is securely attached to the RF module.

7 Route the excess cable between the end of the molded power harness and the 6-pin connector into the white plastic retainer clips on the module cover.

Note: Make sure the power harness locking tabs are fully seated under the amplifier cover.

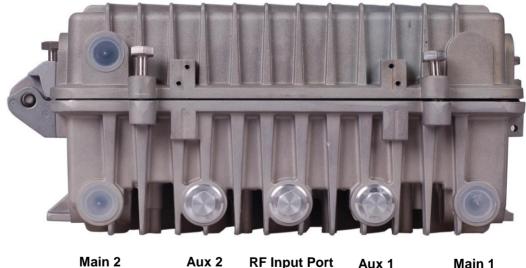
8 Proceed to *Removing and Installing the AC Shunt* (on page 2-17).

System Power

The amplifiers draw AC power from the coaxial cable. This AC power comes from an external AC power supply.

Power can come from the input or output ports, and each amplifier can pass or block AC power flow on any port without affecting RF continuity. However, at least one port must pass AC power to bring power into the amplifier.

To set the power direction, install AC shunt power directors for the ports through which you wish to pass AC.

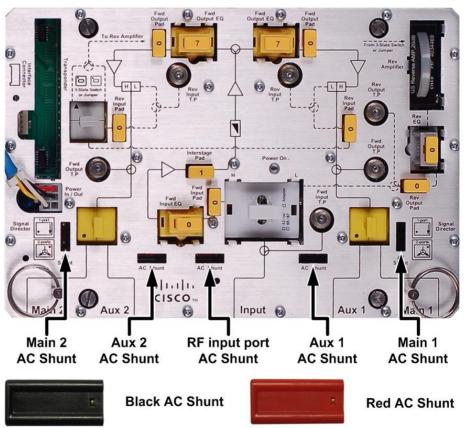

Note: A red AC shunt power director is included with the unit. The red shunt is used to activate the port that supplies power. The red shunt should be removed before installing or removing the RF module from the housing.

CAUTION:

RF connectors and housing seizure assemblies can be damaged if AC shunt power directors are not removed from the amplifier before installing or removing the amplifier module from the housing.

Before powering the GainStar amplifier, make sure all accessories are installed and properly seated.

Important: The Main 1, Main 2, Aux 1, Aux 2 and RF input ports are the RF/Power ports.

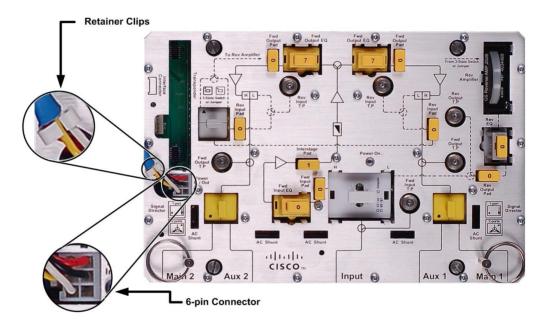

AC Shunt

Check the system maps to determine which AC shunt should be inserted.

- 1 Open the housing. Refer to *Opening the Amplifier Housing* (on page 2-5).
- 2 Plug the GainStar power shunt (red and black) into the AC shunt locations. The red AC shunt indicates where power is coming into the GainStar AmpliFier. The black AC shunt indicates where power is leaving the GainStar Amplifier. See table below. The black AC shunt should be installed before the red AC shunt.

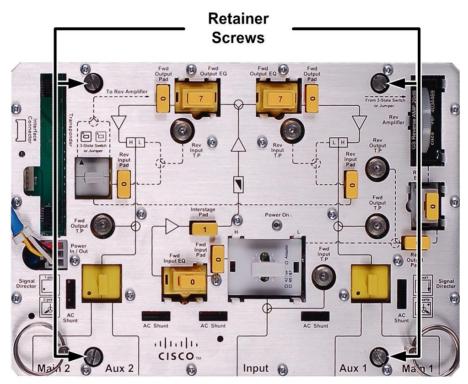
AC Shunt	Main 1	Aux1	Main 2	Aux2	RF input port
Powered from Main 1 port	Red	Black	Black	Black	Black
Powered from Aux 1 port	Black	Red	Black	Black	Black
Powered from Main 2 port	Black	Black	Red	Black	Black
Powered from Aux 2 port	Black	Black	Black	Red	Black
Powered from RF input port	Black	Black	Black	Black	Red

3 Close the housing. Refer to *Closing the Amplifier Housing* (on page 2-21)


To Remove the RF Module

Complete the following steps to remove the RF module.

✓! CAUTION:


RF connectors and housing seizure assemblies can be damaged if AC shunt power directors are not removed from the amplifier before installing or removing the RF module from the housing.

- 1 Open the housing. Refer to *To Open the Amplifier Housing* (on page 2-5).
- 2 If you are working with an amplifier station in which AC is present, remove the AC shunt power directors from the amplifier before removing the RF module from the housing.
- 3 Unplug the 6-pin connector of the power cable harness from the RF module.

- 4 Remove the power cable harness from the white plastic retainer clips.
- 5 Unsnap the cable guide from the holes in the RF module cover.Note: The cable can remain plugged into the power supply module.
- 6 Using a flat-blade screwdriver, loosen the four module retainer screws.
- 7 Remove the RF module from its housing and place the RF module on a secure surface.

The following diagram shows the proper torquing sequence for the housing closure bolts.

\angle ! CAUTION:

Avoid personal injury and damage to the RF module. Make sure that you place the RF module on a secure surface.

Closing the Amplifier Housing

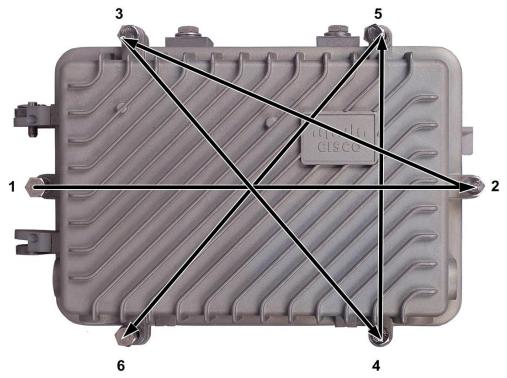
To Close the Amplifier Housing

Complete the following steps to close the Amplifier housing.

\bigtriangleup CAUTION:

Avoid moisture damage and RF leakage! Follow the procedure exactly as shown below to ensure a proper seal.

Ensure that all the cables ar out of the way when closing the housing.


- 1 Make sure that the housing gaskets are clean and in the correct position. Wipe off any excess dirt and debris.
- 2 Close the housing.
- 3 Lightly secure the six ¹/₂-inch closure bolts with a hex driver or ratchet.
- 4 Using a torque wrench, tighten the six closure bolts to 2.8 Nm.

Important: Tighten the closure bolts in the correct sequence as specified in *Torquing Sequence* (on page 2-21).

5 Using the same pattern, tighten the housing closure bolts from 6.8 Nm to 9.0 Nm.

Torquing Sequence

The following diagram shows the proper torquing sequence for the housing closure bolts.

Chapter 3 Balancing and Setup

Overview

This chapter provides instructions for selecting and implementing the correct balancing methods for the GainStar amplifier in your cable system. Balancing sets the operating levels of the station to ensure proper performance.

Important: Use the information in this chapter to identify the equipment needed for balancing and to determine the correct forward path balancing method for your system installation.

In This Chapter

Topic	See Page
Preparing for Forward Path Balancing	3-2
Balancing the Forward Path	3-3
Balancing the Reverse Path	3-9
Upgrading the Amplifier to a Node	3-15

Before You Begin

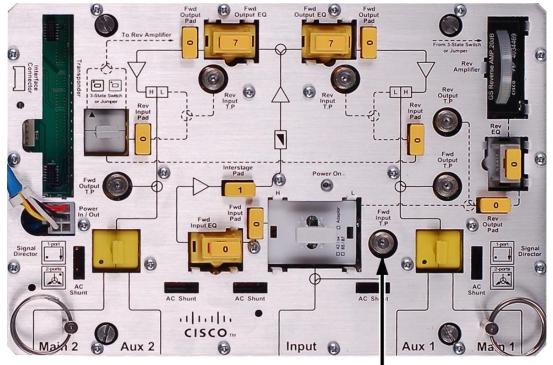
Before you begin balancing, it is important to review and understand the following information. This information will show you which balancing process is appropriate for your amplifier.

Before balancing, make sure you have configured the amplifier module according to the specifications in your design print and that the amplifier has warmed up for approximately one hour. The table below shows the items needed for balancing.

You need a	То
Copy of the design print	Determine expected input and output signal levels.
Torque wrench with 1/2-inch socket	Open and close the system amplifier housing.
Spectrum analyzer or signal analysis meter capable of working with frequencies up to the highest design frequency	Determine absolute and relative signal levels.
Test point probe (part number 1010409)	Access the test points.
75 ohm coaxial cable with F-connectors on each end	Connect the test point probe to the test equipment.

Balancing the Forward Path

Introduction

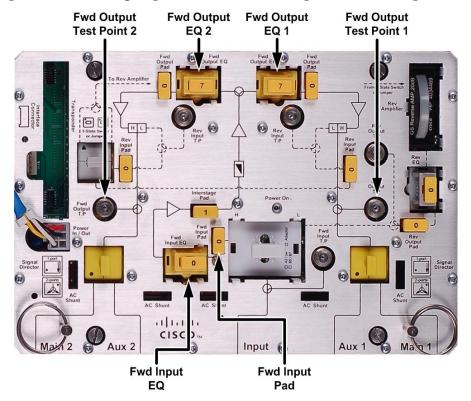

Be sure to use the correct procedure for forward path balancing. Refer to *To Verify the Forward Input Level* (on page 3-3) for help in identifying the procedure that best fits your system installation and amplifier type. Before you begin, make sure that the RF module is configured according to the specifications in the design print, and that the amplifier has warmed up for approximately one hour.

The forward section of the GainStar Amplifier performs conversion, amplification, equalization and test point functions for the forward path signal.

To Verify the Forward Input Level

Complete the following steps to test the input signal level.

Important: You cannot balance the amplifier without the proper input signals.



Fwd Input Test Point

- 1 The RF input level recommended range is 6 dBmV to 10 dBmV. Measure the signal level at the following frequencies:
 - The lowest frequency specified in the system design
 - The highest frequency specified in the system design
 - If the input level is higher than 10 dBmV, The CSO, CTB will deteriorate. You can adjust the Forward input Pad higher.
 - If the input level is less than 6 dBmV, the CNR will deteriorate. You can adjust the Forward input Pad lower.
- 2 Measure the Forward input test point level, and compare this level with the design level. The test point attenuates input signals by 20 dB.
- 3 Are measured levels within the design limits?
 - a) If yes, proceed to step 4.
 - b) If no, or if no signals are present, find the problem before proceeding. You cannot balance the amplifier without the proper input signals.
- 4 Remove the test probe from the forward input test point, leaving other equipment connectors in place.

To Determine the Output Tilt

Complete the following steps to determine the output tilt of the amplifier.

- 1 Connect the test point probe to the forward output test point.
- 2 Consult the design print to find the proper output tilt.
- 3 Measure the output signal levels at the frequencies you used in *To Verify the Forward Input Level* (on page 3-3).
- 4 To determine the actual output tilt, calculate the difference (in dB) between the levels of the lowest and highest specified frequencies.
- 5 Proceed to *To Set Up the Output Tilt* (on page 3-5).

To Set Up the Output Tilt

862 MHz Equalizers

The forward output tilt can be adjusted using the Forward Equalizer (EQ). Each EQ has a range of values. Each EQ value is set by installing the corresponding attenuator pad value. There are three forward EQs for the 862 MHz Platform: 0 dB to 4 dB, P/N 4034450; 5 dB to 9 dB, P/N 4034451; and 10 dB to 14 dB, P/N 4034452. See the table below for the full range of configurations for the 862 MHz EQs.

Forward	Forward Equalizer		Pad for Forward Equalizer	
Equalization	Description	PN	Description	PN
0 dB			0 dB 1 GHz Plug-In Attenuator	4036021
1 dB	GS Fwd Cable EQ,		1 dB 1 GHz Plug-In Attenuator	4036022
2 dB	0~4 dB	4034450	2 dB 1 GHz Plug-In Attenuator	4036023
3 dB	862 MHz Platform		3 dB 1 GHz Plug-In Attenuator	4036024
4 dB			4 dB 1 GHz Plug-In Attenuator	4036025
5 dB			5 dB 1 GHz Plug-In Attenuator	4036026
6 dB	GS Fwd Cable EQ,		6 dB 1 GHz Plug-In Attenuator	4036027
7 dB	5~9 dB 4034451 862 MHz Platform	7 dB 1 GHz Plug-In Attenuator	4036028	
8 dB		8 dB 1 GHz Plug-In Attenuator	4036029	
9 dB			9 dB 1 GHz Plug-In Attenuator	4036030
10 dB			10 dB 1 GHz Plug-In Attenuator	4036031
11 dB	GS Fwd		11 dB 1 GHz Plug-In Attenuator	4036032
12 dB	Cable EQ, 10~14 dB 403445 862 MHz Platform	4034452	12 dB 1 GHz Plug-In Attenuator	4036033
13 dB			13 dB 1 GHz Plug-In Attenuator	4036034
14 dB			14 dB 1 GHz Plug-In Attenuator	4036035

1GHz Equalizers

The forward output tilt can be adjusted using the Forward Equalizer (EQ). Each EQ has a range of values. Each EQ value is set by installing the corresponding attenuator pad value. There are three forward EQs for the 1 GHz Platform: 0 dB to 4 dB, P/N 4034453; 5 dB to 9 dB, P/N 4034454; and 10 dB to 14 dB, P/N 4034455. See the table below for the full range of configurations for the 1 GHz EQs.

Forward	Forward Equalizer		Pad for Forward Equalizer	
Equalization	Description	PN	Description	PN
0 dB		GS Fwd	0 dB 1 GHz Plug-In Attenuator	4036021
1 dB	GS Fwd Cable EQ,		1 dB 1 GHz Plug-In Attenuator	4036022
2 dB	0~4 dB	4034453	2 dB 1 GHz Plug-In Attenuator	4036023
3 dB	1 GHz Platform		3 dB 1 GHz Plug-In Attenuator	4036024
4 dB			4 dB 1 GHz Plug-In Attenuator	4036025
5 dB			5 dB 1 GHz Plug-In Attenuator	4036026
6 dB	GS Fwd Cable EQ,	6 dB 1 GHz Plug-In Attenuator	4036027	
7 dB	5~9 dB	4034454	7 dB 1 GHz Plug-In Attenuator	4036028
8 dB	1 GHz Platform	8 dB 1 GHz Plug-In Attenuator	4036029	
9 dB			9 dB 1 GHz Plug-In Attenuator	4036030
10 dB			10 dB 1 GHz Plug-In Attenuator	4036031
11 dB	GS Fwd Cable FO		11 dB 1 GHz Plug-In Attenuator	4036032
12 dB	Cable EQ, 10~14 dB 4034455 1 GHz Platform	12 dB 1 GHz Plug-In Attenuator	4036033	
13 dB			13 dB 1 GHz Plug-In Attenuator	4036034
14 dB			14 dB 1 GHz Plug-In Attenuator	4036035

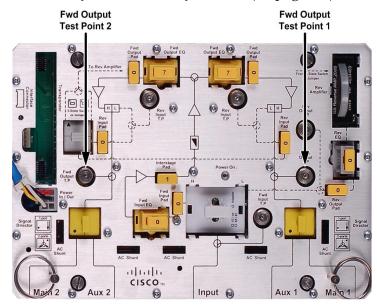
Increasing the equalizer value reduces the level at lower frequencies, relative to the level at 862 MHz / 1 GHz.

Decreasing the equalizer value increases the level at lower frequencies, relative to the level at 862 MHz / 1 GHz.

Complete the following steps to select the proper forward input Equalizer value.

- 1 Compare the calculated input tilt in step 4 of *To Determine the Output Tilt* (on page 3-4) with the design tilt (on the design print).
- 2 Is the Output tilt within \pm 0.5 dB of the design tilt?
 - a) If the output tilt is within ±0.5 dB of the design tilt, proceed to *To Set Up the Forward Output level* (on page 3-8)
 - b) If the output tilt is more than the design tilt, replace the forward input EQ with a lower value.
 - c) If the output tilt is less than the design tilt, replace the forward input EQ with a higher value.
- 3 Measure the output tilt again, and then return to step 1.

Note:


The forward output equalizer is installed at the factory, and should not be changed in the field.

The forward output equalizer and an on-board equalizer combine to generate the total internal tilt for the station. The forward output equalizer value is different from the 1 GHz, or 862 MHz platform to achieve optimum performance.

To Set Up the Forward Output Level

After setting the tilt, complete the following steps to select the proper pad values for the amplifier. The output level of the amplifier is set by selecting the proper pad value.

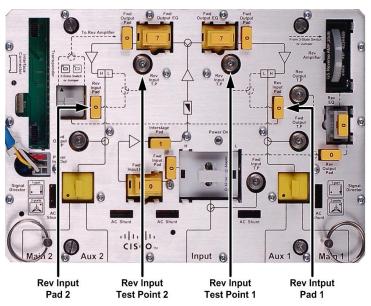
- 1 Connect the test probe to the forward output test point.
- 2 Measure the output level at the high test design frequency, and compare this level with the design level (on the design print).
 - a) 862 MHz for 862 MHz version
 - b) 1000 MHz for 1000 MHz version
- 3 Is the measured output level within ± 0.5 dB of the design level?
 - a) Add 20 dB (dual output) or 16.5 dB (four outputs) to the measured levels to find the true levels.
 - b) If the output level is within ± 0.5 dB of the design output level, proceed to step 5.
 - c) If the output level is more than the design output level, replace the forward input pad with a higher value pad.
 - d) If the output level is less than the design output level, replace the forward input pad with a lower value pad.
- 4 Repeat steps 2 and 3 until the output level is correct.
- 5 Proceed to *To Set Up the Reverse Input Level* (on page 3-9).

(!) CAUTION:

The pad should be configured carefully to control forward output levels. Otherwise, output module damage may occur which will result in Amplifier distortion.

Balancing the Reverse Path

This section covers reverse RF amplifier cascade balancing. Balancing refers to the process of individually aligning reverse amplifier station gain and tilt characteristics to achieve reverse amplifier cascades that have optimum, repeatable transmission characteristics.

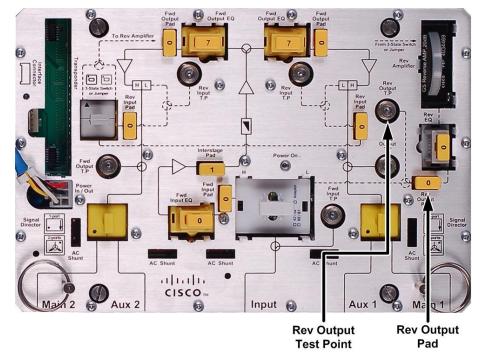

There are a variety of test equipment combinations that enable proper balancing of the reverse path. Regardless of the type of equipment used, the balancing process is fundamentally the same.

To Set Up the Reverse Input Level

Complete the following steps to test the reverse input level.

Important: You cannot balance the amplifier without the proper reverse input signals.

1 Connect the test equipment to the reverse input test point shown in the illustration below.



- 2 The recommended input range is 5 dBmV/ch to 20 dBmV/ch. Measure the signal level.
- 3 Measure the input level, and compare this with the design level. The test point attenuates input signals by 20 dB (for two reverse input ports), or 23.5 dB (for four reverse input ports).
- 4 Are measured levels within the design limits?
 - a) If yes, proceed to step 5.
 - b) If no, or if no signals are present, find the problem before proceeding. You cannot balance the amplifier without proper input signals.
- 5 Remove the test probe from the reverse input test point, leaving other equipment connectors in place.

To Set Up the Reverse Output Level

Complete the following steps to test the reverse output level.

1 Connect the test equipment to the reverse output test point shown in the illustration below.

- 2 Measure the output level, and compare this level with the design level. The test point attenuates output signals by 20 dB.
- 3 Is the measured output level within ± 0.5 dB of the design level?
 - a) If the output level is within ± 0.5 dB of the design output level, proceed to step 5.
 - b) If the output level is more than the design output level, replace the reverse output pad with a higher value pad.
 - c) If the output level is less than the design level, replace the reverse output pad with a lower value pad.
- 4 Repeat steps 2 and 3 until the output level is correct.
- 5 Remove the test probe from the reverse output test point, leaving other equipment connectors intact.

To Set Up the Equalizer for Reverse Path

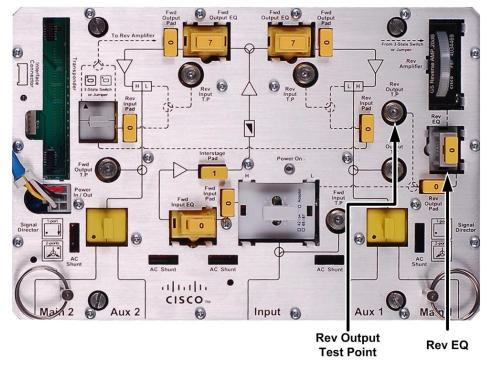
42 MHz Platform

The reverse output tilt can be adjusted using the Reverse Equalizer (EQ). Each EQ has a range of values. Each EQ value is set by installing the corresponding attenuator pad value. There are two reverse EQs for the 42 MHz Platform: 0 dB to 5 dB, P/N 4034465; and 6 dB to 10 dB, P/N 4034466. See the table below for the full range of configurations for the 42 MHz Platform EQs.

Reverse	Reverse Equalizer		Pad for Reverse Equalizer	
Equalization	Description	PN	Description	PN
0 dB *			0 dB 1 GHz Plug-In Attenuator *	4036021
1 dB	GS Rev Cable		1 dB 1 GHz Plug-In Attenuator	4036022
2 dB	EQ, 0 to 5dB 42 MHz	4034465	2 dB 1 GHz Plug-In Attenuator	4036023
3 dB	Platform		3 dB 1 GHz Plug-In Attenuator	4036024
4 dB			4 dB 1 GHz Plug-In Attenuator	4036025
5 dB			5 dB 1 GHz Plug-In Attenuator	4036026
6 dB			6 dB 1 GHz Plug-In Attenuator	4036027
7 dB	GS Rev Cable EQ, 6 to 10 dB 42 MHz 4034466 Platform		7 dB 1 GHz Plug-In Attenuator	4036028
8 dB		4034466	8 dB 1 GHz Plug-In Attenuator	4036029
9 dB			9 dB 1 GHz Plug-In Attenuator	4036030
10 dB			10 dB 1 GHz Plug-In Attenuator	4036031

* The section in gray indicates factory default values.

65 MHz Platform


The reverse output tilt can be adjusted using the Reverse Equalizer (EQ). Each EQ has a range of values. Each EQ value is set by installing the corresponding attenuator pad value. There are two reverse EQs for the 65 MHz Platform: 0 dB to 5 dB, P/N 4034462; and 6 dB to 10 dB, P/N 4034463. See the table below for the full range of configurations for the 42 MHz Platform EQs.

Reverse	Reverse Equalizer		Pad for Reverse Equalizer	
Equalization	Description	PN		Description
0 dB *			0 dB 1 GHz Plug-In Attenuator *	4036021
1 dB	GS Rev Cable EQ, 0 to 5 dB 65 MHz 403444		1 dB 1 GHz Plug-In Attenuator	4036022
2 dB		1001160	2 dB 1 GHz Plug-In Attenuator	4036023
3 dB	Platform	4034462	3 dB 1 GHz Plug-In Attenuator	4036024
4 dB			4 dB 1 GHz Plug-In Attenuator	4036025
5 dB			5 dB 1 GHz Plug-In Attenuator	4036026
6 dB			6 dB 1 GHz Plug-In Attenuator	4036027
7 dB	GS Rev Cable EQ, 6 to 10 dB 65 MHz Platform		7 dB 1 GHz Plug-In Attenuator	4036028
8 dB		4034463	8 dB 1 GHz Plug-In Attenuator	4036029
9 dB		9 dB 1 GHz Plug-In Attenuator	4036030	
10 dB			10 dB 1 GHz Plug-In Attenuator	4036031

* The section in gray indicates factory default values.

Complete the following steps to select the proper reverse Equalizer value.

1 Connect the test point probe to the reverse output test point.

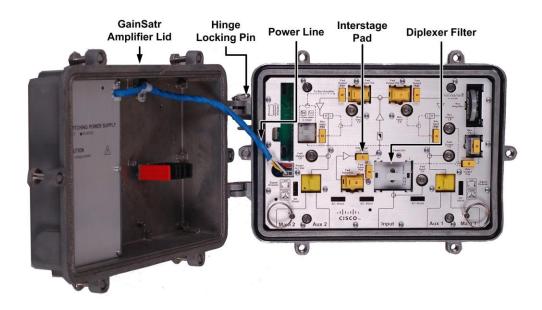
2 Compare the calculated tilt with the design tilt (on the design print).

- 3 Is the reverse output tilt within ± 0.5 dB of the design tilt?
 - a) If the output tilt is within ± 0.5 dB of the design tilt, proceed to the next section.
 - b) If the output tilt is more than the design tilt, replace the reverse EQ with a lower value.
 - c) If the output tilt is less than the design tilt, replace the reverse EQ with a higher value.
- 4 Repeat steps 2 and 3 until the output level is correct.
- 5 Remove the test probe from the reverse output test point, leaving other equipment connectors intact.

Note:

The reverse equalizer is installed at the factory with 0 dB pad.

Upgrading the Amplifier to a Node

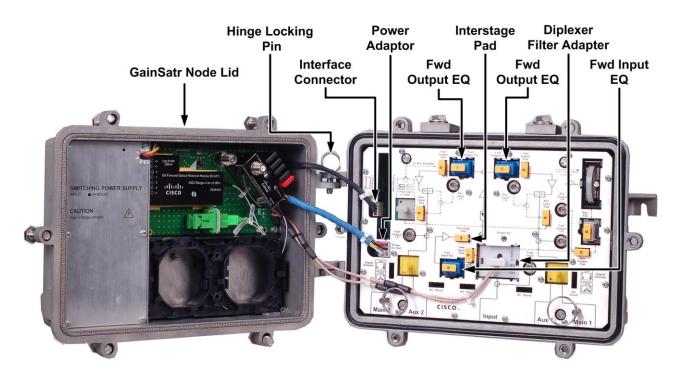

Introduction

The GainStar Amplifier can be field upgraded to a GainStar Node.

To Disconnect the GainStar Amplifier Lid

Follow these steps to disconnect the GainStar Amplifier Lid. See illustration below.

- 1 Open the GainStar Amplifier Lid.
- 2 Disconnect the power adapter from the power in/out port.
- 3 Remove the GainStar diplexer filter.
- 4 Remove the interstage PAD
- 5 Remove the hinge locking pin.
- 6 Detach the Amplifier lid.


Upgrading the Amplifier to a Node, Continued

To Install the GainStar Node Lid

Follow these steps to install the GainStar Node Lid. See illustration below.

- 1 Attach the GainStar Node lid and insert the hinge locking pin.
- 2 Insert the Power adapter in the power in/out port.
- 3 Insert the diplexer filter adapter in the Diplexer Filter port.
- 4 Insert the interface connector in the port.
- 5 Change the Fwd input EQ and Fwd output EQs to Linear EQs. (Fwd input Linear EQ should be ordered by the customer)
- 6 Change the interstage PAD from 0 dB to 2 dB (862 MHz) or 1 dB to 3 dB (1 GHz).

Important: For more information, refer to the GainStar Node Installation and Operation Guide, part Number 4035008.

Chapter 4 Troubleshooting

Overview

This chapter describes the steps you may take to troubleshoot the GainStar Amplifier.

In This Chapter

Topic	See Page
Equipment	4-2
No Forward RF Signal	4-3
Low or Degraded Forward RF Signal	4-4
No Reverse RF Signal	4-5
Low or Degraded Reverse RF Signal	4-6
No Power Supply	4-8

The following equipment may be necessary to perform some troubleshooting procedures.

- Compressed air (also called "canned air")
- Spectrum analyzer or a field strength meter to measure RF levels
- Test point probe, part number 1010409, to access test points

No Forward RF Signal

The forward RF signal can be measured at the amplifier module forward input and

at the forward output main 1 and forward output main 2 test points.

No Forward RF Signal Troubleshooting Table

Before you begin troubleshooting for no forward RF signal, verify that the amplifier is receiving the proper forward RF input signal from the upstream amplifier.

Possible Cause	Solution
No forward RF signal at the forward input test point.	Verify the connection of the RF Cable Connector.
	Verify that the amplifier is receiving the proper forward RF input signal from the upstream amplifier.
	Important: You cannot balance the amplifier without the proper forward RF input signal.
There is forward RF signal at the forward	RF input signal.
input test point, but no signal at one or all of the forward output test points.	Verify that all the proper accessories, pads, EQs, and signal directors (if applicable) are firmly installed in the correct locations. Verify that the accessories are firmly installed in the correct locations.
	Replace the RF module.

Low or Degraded Forward RF Signal

The forward RF signal can be measured at the amplifier module forward input and at the forward output main 1 and forward output main 2 test points.

Low or Degraded Forward RF Signal Troubleshooting Table

Before you begin troubleshooting for a low or degraded forward RF signal, verify that the amplifier is receiving the proper forward RF input signal from the upstream amplifier.

Important: You cannot balance the amplifier without the proper forward RF input signal.

Make sure you have configured the amplifier module according to the specifications in the design print, and that the amplifier has warmed up for approximately one hour.

Make sure you are using the proper tilt reference when setting levels. An 862 MHz or 1 GHz design balanced at 550 MHz requires a corrected tilt reference to compensate for the difference in carrier levels between 550 MHz and 862 MHz or 1 GHz. The tilt reference at 550 MHz is lower than the tilt reference at 862 MHz or 1 GHz. Refer to the tilt charts in *Technical Information* (on page 6-1) for more information.

Possible Cause	Solution
Low or degraded forward RF signal at the forward input test point.	Verify that the amplifier is receiving the proper forward RF input signal from the upstream amplifier.
	Important: You cannot balance the amplifier without the proper forward RF input signal.
There is a proper forward RF signal at the forward input test point, but a low or degraded signal at one or all of the forward output test points.	Verify that all the proper accessories, pads, EQs, and signal directors (if applicable) are firmly installed in the correct locations.
	Verify that the factory installed accessories are firmly installed in the correct locations.
	Replace the RF module

No Reverse RF Signal

The reverse RF signal can be measured at the amplifier module reverse input main 1, reverse input main 2 and reverse output test points.

No Reverse RF Signal Troubleshooting Table

Before you begin troubleshooting for no reverse RF signal, verify that the amplifier is receiving the proper reverse RF input signals from the downstream amplifiers at the amplifier reverse input main 1, reverse input main 2 test and reverse output point.

Important: You cannot balance the amplifier without the proper reverse RF input signals.

Possible Cause	Solution
No reverse RF signal at the reverse input test point(s).	Verify the connection of RF Cable Connector.
	Verify that the amplifier is receiving the proper reverse RF input signals from the downstream amplifiers.
	Important: You cannot balance the amplifier without the proper reverse RF input signals.
There are proper reverse RF signals at the reverse input 1, reverse input 2 test points, but no signal at the reverse output test point.	Verify that the amplifier module is receiving the proper forward RF signal. Refer to No Forward RF Signal (on page 4-3).
	Verify that all the proper accessories, pads, EQs, Reverse Amplifier, and signal director are firmly installed in the correct locations.
	Verify that the factory installed accessories are firmly installed in the correct locations.
	Verify that the 3-stage switch (if applicable) or its jumpers are properly and firmly installed.
	Replace the reverse amplifier module.

Low or Degraded Reverse RF Signal

The reverse RF signal can be measured at the amplifier module reverse input main 1, reverse input main 2 and reverse output test points.

Low or Degraded Reverse RF Signal Troubleshooting Table

Before you begin troubleshooting for a low or degraded reverse RF signal, verify that the amplifier is receiving the proper reverse RF input signals from the downstream amplifiers at the amplifier module reverse input main 1, reverse input main 2 test points.

Important: You cannot balance the amplifier without the proper reverse RF input signals.

Make sure you have configured the amplifier module according to the specifications in the design print, and that the amplifier has warmed up for approximately one hour.

Make sure you are using the proper total tilt reference when setting receive levels.

Refer to the reverse equalizer charts in *Technical Information* (on page 6-1) for more information.

Possible Cause	Solution
Low or degraded reverse RF signal at the reverse input test point(s).	Verify that the amplifier is receiving the proper reverse RF input signals from the downstream amplifiers.
	Important: You cannot balance the amplifier without the proper reverse RF input signals.
There are proper reverse RF signals at the reverse input 1, reverse input 2 test points, but a low or degraded signal at the reverse output test point.	Measure the main reverse input test point and the reverse output test point. Subtract the reverse amplifier gain and add the pad values and EQ insertion loss to verify proper reverse amplifier gain.
	Verify that all the proper accessories, pads, EQs, Reverse amplifier, and signal directors (if applicable) are firmly installed in the correct locations.
	Verify that the factory installed accessories are firmly installed in the correct locations.

	Verify that the 3-stage switch and its jumpers are properly and firmly installed.
	Verify that any unused RF ports are properly terminated.
	Use a spectrum analyzer to look at the reverse RF input signal spectral quality at each reverse input test point and compare it to the reverse
	RF output signal spectral quality.
Reverse RF signal still low or degraded.	If degradation is generated in the reverse amplifier, replace the reverse amplifier.
	If degradation is generated by the downstream amplifier reverse RF signal, troubleshoot the RF amplifier feeding this station.
	Replace the reverse amplifier module.

No Power Supply

No Power Supply

Before you begin troubleshooting for the power supply, verify that the power supply is receiving power.

Important: You cannot balance the amplifier without the proper power supply.

Possible Cause	Solution
No Power supply.	Verify that the power supply is receiving power.
	Important: You cannot balance the amplifier without the proper power supply.
	Replace the GainStar amplifier Housing lid.

Chapter 5 Customer Support Information

Overview

This chapter contains information on obtaining product support.

In This Chapter

Торіс	See Page
Obtaining Product Support	5-2

IF	THEN
you have general questions about this product	Contact your distributor or sales agent for product information or refer to product data sheets on www.cisco.com.
you have technical questions about this product	Call the nearest Technical Service center or Cisco office.
you have customer service questions or need a return material authorization (RMA) number	Call the nearest Customer Service center or Cisco office.

Support Telephone Numbers

Telephone Numbers

This table lists the Technical Support and Customer Service numbers for your area.

Region	Centers	Telephone and Fax Numbers			
North America	Cisco Services	For Technical Support, call:			
	Atlanta, Georgia	Toll-free: 1-800-722-2009			
	United States	Local: 678-277-1120 (Press 2 at the prompt)			
		For <i>Customer Service</i> , call:			
		Toll-free: 1-800-722-2009			
		Local: 678-277-1120 (Press 3 at the prompt)			
		Fax: 770-236-5477			
		E-mail: customer-service@cisco.com			
Europe,	Belgium	For Technical Support, call:			
Middle East, Africa		Telephone: 32-56-445-197 or 32-56-445-155			
		Fax: 32-56-445-061			
		For <i>Customer Service</i> , call:			
		Telephone: 32-56-445-444			
		Fax: 32-56-445-051			
		E-mail: service-elc@cisco.com			

Obtaining Product Support

Region	Centers	Telephone and Fax Number
Japan	Japan	Telephone: 82-2-3429-8800
		Fax: 82-2-3452-9748
		E-mail: songk@cisco.com
Korea	Korea	Telephone: 82-2-3429-8800
		Fax: 82-2-3452-9748
		E-mail: songk@cisco.com
China (mainland)	China	Telephone: 86-21-2401-4433
		Fax: 86-21-2401-4455
		E-mail: repaircentercn@external.cisco.com
All other	Hong Kong	Telephone: 852-2588-4746
Asia-Pacific countries &		Fax: 852-2588-3139
Australia		E-mail: support.apr@sciatl.com
Brazil	Brazil	Telephone: 11-55-08-9999
		Fax: 11-55-08-9998
		E-mail: fattinl@cisco.com or
		ecavalhe@cisco.com
Mexico,	Mexico	For <i>Technical Support</i> , call:
Central America, Caribbean		Telephone: 52-3515152599
		Fax: 52-3515152599
		For <i>Customer Service</i> , call:
		Telephone: 52-55-50-81-8425
		Fax: 52-55-52-61-0893
All other	Argentina	For <i>Technical Support</i> , call:
Latin America countries		Telephone: 54-23-20-403340 ext 109
countries		Fax: 54-23-20-403340 ext 103
		For <i>Customer Service</i> , call:
		Telephone: 770-236-5662
		Fax: 770-236-5888
		E-mail: keillov@cisco.com

Chapter 6 Technical Information

Overview

This appendix contains forward and reverse equalizer typical insertion Loss at various frequencies.

In This Appendix

Topic	See Page
Forward Cable Equalizer	6-2
Forward Inverse Cable Equalizer	6-4
Reverse Cable Equalizer	6-6
GainStar Amplifier Accessories Part Numbers	6-8

Forward Cable Equalizer

EQ	Part	Typical Insertion Loss (dB) at Various Frequencies (MHz)								
Value (dB)	Number	54	77	86	550	600	650	750	870	1000
0		0.6	0.6	0.6	0.2	0.2	0.2	0.2	0.2	0.3
1		1.6	1.6	1.6	0.7	0.7	0.6	0.5	0.5	0.6
2	4034453	2.6	2.3	2.2	1.2	1.1	1.0	0.9	0.9	0.8
3		3.6	3.5	3.5	1.6	1.5	1.4	1.2	1.0	0.9
4		4.6	4.5	4.4	2.0	1.9	1.8	1.5	1.2	0.9
5		5.9	5.8	5.7	2.7	2.6	2.3	2.0	1.5	0.9
6		6.8	6.7	6.7	3.1	2.9	2.6	2.2	1.6	0.9
7	4034454	7.8	7.7	7.6	3.6	3.3	2.9	2.4	1.7	0.9
8		8.8	8.7	8.6	4.0	3.7	3.2	2.6	1.8	0.9
9		9.8	9.6	9.5	4.3	4.0	3.5	2.8	1.9	0.9
10		10.7	10.5	10.4	4.7	4.3	3.9	3.1	2.1	1.0
11	4034455	11.7	11.5	11.4	5.0	4.6	4.1	3.2	2.1	1.0
12		12.7	12.4	12.3	5.3	4.8	4.3	3.4	2.2	1.0
13		13.6	13.3	13.2	5.5	5.0	4.5	3.5	2.2	1.0
14		14.6	14.2	14.0	5.8	5.2	4.6	3.5	2.2	1.0

1 GHz Forward Cable Equalizer Loss Table

Forward Cable Equalizer, Continued

The rorward Cable Equalizer Loss Table											
EQ	Part	Typical	Typical Insertion Loss (dB) at Various Frequencies (MHz)								
Value (dB)	Number	54	77	86	550	600	650	750	862		
0		0.4	0.4	0.5	0.2	0.2	0.1	0.1	0.3		
1		1.4	1.4	1.4	0.6	0.5	0.5	0.4	0.4		
2	4034450	2.4	2.4	2.3	0.9	0.9	0.8	0.6	0.5		
3		3.4	3.3	3.3	1.3	1.2	1.1	0.8	0.5		
4		4.4	4.3	4.3	1.6	1.5	1.3	1.0	0.5		
5		5.8	5.6	5.6	1.8	1.6	1.3	0.9	0.5		
6		6.8	6.6	6.5	2.0	1.7	1.4	0.9	0.5		
7	4034451	7.7	7.5	7.4	2.3	2.0	1.6	1.0	0.5		
8		8.7	8.4	8.3	2.5	2.2	1.7	1.0	0.5		
9		9.6	9.4	9.2	2.7	2.3	1.8	1.1	0.8		
10		10.6	10.3	10.2	3.6	3.1	2.6	1.7	0.8		
11	4034452	11.5	11.2	11.1	3.7	3.3	2.7	1.7	0.8		
12		12.5	12.1	12.0	4.0	3.5	2.8	1.7	0.8		
13		13.5	13.1	12.9	4.2	3.6	3.0	1.9	0.8		
14		14.4	13.9	13.7	4.4	3.7	3.1	1.9	0.8		

862 MHz Forward Cable Equalizer Loss Table

Forward Inverse Cable Equalizer

z Inverse Equalizer Loss Table										
EQ	Part	Typical Insertion Loss (dB) at Various Frequencies (M								MHz)
Value (dB)	Number	54	77	86	550	600	650	750	862	1000
0		0.03	0.06	0.05	0.24	0.27	0.30	0.34	0.39	0.49
1		0.53	0.64	0.65	1.01	1.06	1.10	1.22	1.37	1.60
2	4035729	0.63	0.88	0.93	1.67	1.73	1.79	1.95	2.16	2.54
3		0.58	0.92	1.05	2.48	2.57	2.65	2.88	3.16	3.65
4		0.52	0.88	0.98	3.04	3.16	3.26	3.54	3.91	4.51
5		0.57	0.97	1.12	3.89	4.04	4.20	4.53	4.97	5.68
6		0.53	0.93	1.05	4.49	4.69	4.88	5.31	5.87	6.71
7	4035730	0.49	0.88	1.01	5.03	5.29	5.52	6.05	6.67	7.62
8		0.46	0.84	0.96	5.67	5.96	6.24	6.86	7.60	8.74
9		0.42	0.78	0.90	6.27	6.64	6.97	7.69	8.51	9.72
10		0.60	1.10	1.27	7.44	7.80	8.12	8.89	9.75	10.93
11	4035731	0.58	1.08	1.26	7.87	8.29	8.67	9.53	10.50	11.85
12		0.55	1.02	1.17	8.24	8.70	9.12	10.04	11.06	12.38
13		0.53	1.00	1.14	8.59	9.12	9.59	10.69	11.90	13.54
14		0.51	0.96	1.12	8.90	9.52	10.08	11.32	12.74	14.68

54 MHz Inverse Equalizer Loss Table

Forward Inverse Equalizer, Continued

IHZ Inverse Equalizer Loss Table										
EQ Value	Part Number	Typical Insertion Loss (dB) at Various Frequencies (MHz)								
(dB)	Number	86	550	600	650	750	862	1000		
0		0.05	0.22	0.24	0.27	0.30	0.35	0.43		
1		0.37	0.94	0.99	1.03	1.15	1.28	1.56		
2	4035732	0.42	1.56	1.63	1.70	1.87	2.10	2.49		
3		0.38	2.31	2.41	2.50	2.70	3.01	3.54		
4		0.33	2.82	2.94	3.07	3.36	3.80	4.48		
5		0.25	3.43	3.60	3.75	4.11	4.59	5.38		
6		0.24	3.97	4.19	4.38	4.84	5.43	6.33		
7	4035733	0.22	4.42	4.71	4.96	5.55	6.23	7.25		
8		0.21	4.93	5.26	5.56	6.24	7.05	8.22		
9		0.20	5.40	5.81	6.18	6.97	7.89	9.15		
10		0.68	7.36	7.73	8.07	8.79	9.61	10.72		
11	4035734	0.63	7.83	8.28	8.68	9.49	10.42	11.68		
12		0.60	8.21	8.73	9.21	10.15	11.18	12.49		
13		0.58	8.59	9.18	9.73	10.86	12.09	13.69		
14		0.56	8.78	9.45	10.08	11.42	12.88	14.85		

87 MHz Inverse Equalizer Loss Table

Reverse Cable Equalizer

42 MHz Reverse Cable Equalizer Loss Table

	EQ Value (dB)	Part Number	Typical Insertion Loss (dB) at Various Frequencies (MHz)				
			5	40	42		
	0	4034465	0.7	0.5	0.5		

1		1.7	0.6	0.6
2		2.6	0.7	0.7
3		3.6	0.8	0.7
4		4.5	0.9	0.8
5		5.5	1.0	0.9
6		6.7	1.0	1.0
7		7.6	1.0	1.0
8	4034466	8.6	1.1	1.0
9		9.5	1.2	1.0
10		10.4	1.2	1.0

65 MHz Reverse Cable Equalizer Loss Table

EQ Value (dB)	Part Number	Typical Insertion Loss (dB) at Various Frequencies (MHz)	
		5	65
0	4034462	0.8	0.6
1		1.8	0.7
2		2.8	0.8
3		3.8	0.9
4		4.8	1.0
5		5.7	1.0
6	4034463	6.7	0.6
7		7.7	0.6
8		8.6	0.6
9		9.6	0.6
10		10.6	0.7

GainStar Amplifier Accessories Part Numbers

Attenuator Pad Value	Part Number
0 dB 1 GHz Plug-In Attenuator	4036021
1 dB 1 GHz Plug-In Attenuator	4036022
2 dB 1 GHz Plug-In Attenuator	4036023
3 dB 1 GHz Plug-In Attenuator	4036024
4 dB 1 GHz Plug-In Attenuator	4036025
5 dB 1 GHz Plug-In Attenuator	4036026
6 dB 1 GHz Plug-In Attenuator	4036027
7 dB 1 GHz Plug-In Attenuator	4036028
8 dB 1 GHz Plug-In Attenuator	4036029
9 dB 1 GHz Plug-In Attenuator	4036030
10 dB 1 GHz Plug-In Attenuator	4036031
11 dB 1 GHz Plug-In Attenuator	4036032
12 dB 1 GHz Plug-In Attenuator	4036033
13 dB 1 GHz Plug-In Attenuator	4036034
14 dB 1 GHz Plug-In Attenuator	4036035
15 dB 1 GHz Plug-In Attenuator	4036036
16 dB 1 GHz Plug-In Attenuator	4036037
17 dB 1 GHz Plug-In Attenuator	4036038
18 dB 1 GHz Plug-In Attenuator	4036039
19 dB 1 GHz Plug-In Attenuator	4036040
20 dB 1 GHz Plug-In Attenuator	4036041
Plug-In 75 Ω Terminator 3 - PIN	4036140
3-State Switch Jumper	4034473
Power Shunt(black)	4034476
Power Shunt(red)	4034477
Signal Director	4034468

The following table provides part numbers for the GainStar Amplifier

1010409

Test point probe

CISCO.

5030 Sugarloaf Parkway, Box 465447 Lawrenceville, GA 30042

678.277.1000

Cisco, Cisco Systems, the Cisco logo, and the Cisco Systems logo are registered trademarks or trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries. All other trademarks mentioned in this document are the property of their respective owners.

Product and service availability are subject to change without notice.

© 2010 Cisco Systems, Inc. All rights reserved. April 2010

Printed in United States of America Part Number 4034996 Rev A