atfren] s
CISCO.

Cisco Virtualized Infrastructure Manager Documentation, 4.0.0

First Published: 2021-01-15
Last Modified: 2021-05-18

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com/

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN'NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.
Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

©2021 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/offices
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks

1. CVIMA.0.0 HOMettt 5

1A RelEasE NOTES . . . oo 6
1.1.1 Cisco VIM 4.0.0 Release NOteSo it e e e e 7
1.2 Cisco NFVI ArChitectureo e e e e e 15
1.2.1 CiSCONFVI OVEIVIEW . .o ottt e e e e e e e e e e e e e e e e 16
1.2.2 CISCO VIM OVEIVIEW . . .ottt et et e 20
1.2.3 Networking OVeIVIBW . . . oo e e e e e e e e e e e e 21
1.2.4 UCS C-Series Network TOPOoIOGIESo ottt e e e e e e e e e e e 26
1.2.5 Management Node Networking 33
T.2.6 IPVB SUPPOI . o oo 35
T2 7 UCS C-SeMES . .ottt ittt e e e e e e e 36
1.2.8 High Availability 38
1.2.9 Storage NOdE OVEIVIEWottt e e e e e e e e e e e 40
1.2.10 OpenStack Telemetry Service 42
12T NV BENCh . o 45
1.2.11.1 Setting Up NFVDENCh . . . Lo 46
1,211, 2 EnCapsUulation 55
1.2.11.3 CiSCO VIM CLI .o e e e e e e 57
1.2.12 Auto-ToR Configuration via ACT APl e 58
1.2.13 NCS-5500 @s TOR Optiont et e e e e e e e e e e 59
1.2.14 Disk Managemento e 60
1.215 OSD MainteNanCeottt ettt e e e 61
1.2.16 Power Management 62
1.2.17 Physical Cores and Reserved MemoOryt e e e 63
1.2.18 Software HUb e 64
T. 219 VXLAN EVPN DESIGN . o ottt ettt e e e e e e e e e e e e e e e 65
1.2.20 VPP Port Mirroring SUPPOottt e et e e e e e e e e 68
1.2.21 Segment RoUtINg EV PN .. .o 69
1.2.22 Container Workload e 73
1.2.23 Management Node Centralization 74
1.2.24 L3 Fabric Deploymento e 75
1.2.25 OpenStack Barbican 76
1.2.26 Management Network Over TLS e e e e e 78
1.2.27 Support of Pre-encrypted Image 79
1.3 Installation 80
1.3.1 Cisco NFVI Installation OVerview e e e 81
1.3.2 Installation Preparation Without Internet ACCess 82
1.3.2.1 Air-gapped Installation Approach 83
1.3.2.2 Prerequisites for Air-Gapped Installation e 84
1.3.2.3 NFVI Installation Setup via USB e e 85
1.3.2.4 NFVI Installation File-Based Image 89
1.3.3 Preparing for Cisco NFVI Installation 91
1.3.3.1 Cisco NFVI Hardware Installation e 92
1.3.3.2 ToR Switch Configuration for C-Series POds e e 93
1.3.3.3 Preparing Cisco IMC e 96
1.3.3.4 Management Node on UCS C-series (MA/MS5) e 97
1.3.3.5 Management Node on Quanta SErverst 99
1.3.3.6 Cisco VIM Software HUb 100
1.3.3.7 UCS C-Series Pod 108
1.3.3.8 Out-of-Band Management SWitCh 112
1.3.3.9 Third-Party Compute SUPPOIt e 113
1.3.4 Centralizing Management NOGe e e e 114
1.3.5 CVIM Monitor and Inventory Service Configuration e 123
1.3.6 Highly Available CVIM MoONItOr e e e e e e 130
1.3.6.1 Overview of HA CVIM-MON e e e 131
1.3.6.2 Hardware Requirements for HA CVIM MON e e e e 132
1.3.6.3 Networking Layout 133
1.3.6.4 Network TOPOIOGIESot e e e 134
1.3.6.5 ArChitectUre 138
1.3.6.6 Installation MOdes 139
1.3.6.7 SetUp File .. o 142
1.3.6.8 HA CVIM-MON Installer e e e e e e e e e e e e 147
1.3.8.9 RESOUIMCES . . . ottt e e e 153
1.3.6.10 Pod Operationsottt e 156
1.3.6.11 Stack Operations 172
1.3.6. 12 EXterNal Serverso 175
1.3.6.13 Updating NOdeso 176
1.3.6.14 Custom Grafana Dashboards e 178
1.3.6.15 Alert RUIES . . .o 182
1.3.6.16 Alert Manager 186
1.3.8.17 BaCKUD ..o 191
1.3, 18 RESIOrE . . oo 193
1.3.6.19 Reinstallation of CVIM-MON HA Pod e e e e 194
1.3.6.20 CVIM MON HA Cluster MONItoringot e e e e 195
1.3.7 CiSCO VIM o 198
1.3.7. 1 Installation SEQUENCE 199
1.3.7.2 Deployment of Management Node e 200
1.3.7.3 Cisco VIM Client Detailso e e e e e e 201

1.3.7.4 Pod Reinstallation 204

1.3.7.5 Control and Data Plane Testingttt e 205

1.3.7.6 Updating Cisco VIM Software e 206
1.3.8 Unified Management 207
1.3.8. T UM OVeIVIEW .o e e e e e 208
1.3.8.2 UM with Infernet ACCESS e 210
1.3.8.3 UM with Cisco VIM Software Hub 219
1.3.8.4 UM Ul User Authentication and Authorization with LDAP e 220
1.3.8. 5 UM WithoUt SIMT P . .o e e e e 222
1.3.8.6 UM Without Internet ACCESS e e e e e 224
1.3.8.7 UM Optional SErViCeSo e 230
1.3.8.8 UM Post Bootstrap Validation Checks e e 231
1.3.8.9 UM Admin Login for Standalone Setup 235
1.3.8.10 UM Pod Admin Login for Standalone Setup 236
1.3.8.11 UM Host Administratorso e e 237
1.3.8.12 Reinstallation of UM NOAe 242

1.4 Verifying Installationo 243
1.4.1 Displaying IP Addresses i 244
1.4.2 Cisco VIM Client CLI Availability e e e 245
1.4.3 Displaying CisCO NF VI LOGSttt e e e e e e e e e e e e 246
1.4.4 Accessing OpenStack API ENdpoints i 247
1.4.5 Assessing Cisco NFVI Health 248
1.4.6 HA Proxy Dashboard/ELK Stack LOgs e e e e 250
1.4.7 Testing Pod/Cloud Infrastructure e 251
1.5 CisCO VIM REST APl o e e e e 252
151 REST API OVEIVIEW . . .ottt et e e e e e e e e e e e e e e e e e e e 253
1.5.2 AP RESOUICES . o .ottt ettt e et e e e e e e e e e e e e 255
1.5.2.1 Setupdata and Offline Validation e 287
1.5.2.2 Nodes and Replace Controller e 292
1.5.2.3 Install RESOUICEo e 297
1.5.2.4 OpenStack SetUp e 300
1.5, 2. B Update .o 302
1.5.2.6 Version and Hardware Information 305
1.5.2.7 Post-Installation Operations 307
1.5.2.8 Testing and PolliNg 309
1.5.2.9 Mandatory/Optional Feature Mappingottt e e 313
1.5.2.10 Cloud Sanityo 316
1.5.2.11 Disk and OSD Maintenancettt e 320
1.5.2.12 Hardware Management Utility 327
1.5.3 Cisco VIM REST API Using curl for IPV4 e e e e 330
1.5.4 Cisco VIM REST APl Using curl for IPVB o e e e e e e 335
1.5.5 Management Node VMs Lifecycle 344
1.6 Monitoring Performance 351
1.6.1 Infrastructure Log Management 352
1.6.2 Displaying Log Fileso e e 354
1.6.3 Kibana Dashboard Login 358
1.6.4 Rotation Of LOgSo 365
1.8 5 ElastiCsearch 366
1.68.6 CVIM-MON . .o 369
1.6.7 Network Performance Test e e 377
1.7 Unified Management NG 378
171 NG UM BIUEPINtS . .ot e e e e e e e e e e e e 379
1.7.1.1 NG Overview of UM BIUEPIiNto e e e e e 380
1.7.1.2 NG Create BIUEPrint e e 381
1.7.1.3 NG Activating Blueprint in Existing Pod 382
1.7.1.4 NG Validating BIUeprinto e e e 383
1.7.1.5 NG Viewing and Downloading BIUEPIiNt e 384
1.7, 2UsiNg NG UM Lo 385
1.7.2.1 NG Naming ConventionSt et e e e 386
1.7.22 NG UM Administrator 387
1.7.2.3 NG Pod AdMINistrator 389
1724 NG Pod USEIS . . oo e e e e 390
1.7.2.5 NG Pod User Administration e e e e e e 391
1.7.26 NG UM Dashboard e e e e 394
1.7.2.7 NG Pod Registration/Management 397
1.7.2.8 NG Monitoring Pod Status e 399
1.7.2.9 NG Context Switching Between Pods 400
1.7.2.10 NG Cisco VIM Pod Software Update e e e 401
1.7.2.11 NG Managing PassWordsttt e e e e 402
1.7.2.12 NG Day 2 Reconfigure/Enablement 404
1.7.213 NG CVIM RMA for AUtO-TOR . . .o e e e e e e e e e e e e e e s 408
1.7.2.14 NG Cisco VIM Validation TOOISot e e e e e e e 409
1.7.2.15 NG Cisco VIM Operational TOOISttt e e e e e e e e 413
1.7.216 NG Managing Hardware 415
1.7.217 NG Managing PowWer 422
1.7.2.18 NG Uploading Glance IMagest e e e e 425

1.8 Day 2 Operations Of UM 427
1.8.1 Shutting Down UM . oL e 428
1.8.2 Restarting UM . ..o 429

1.8.3 RecoNfigUIING UM . .o e 430

1.8.4 Update/Upgrade UMt e e e e 438

1.8.5 ROIIbACK UM o 441
1.8.6 Commit UM .o 442
1.8.7 Migrating of UM to NG INStanCe i e e e e e e 443
1.8.8 UM TeCh SUPPOIt . . .o e e e e e 445

1.9 BIOS/BMC/Firmware Updatet e e e e e e 446
1.9.1 BIOS/BMC/Firmware Update OVEIVIEWottt e e e e e e e e e e e e e e e 447
1.9.2 Cisco UCS Firmware Upgradet e e e e e e e e e 448
1.9.3 Quanta Firmware Upgrade 451
1.9.4 Intel FPGA PAC N3000 Firmware Update Support e 454
110 CoNfiQUIAtiON . . .o 457
1.10.1 Setup Configuration File e 458
1.10.2 TOR Managemento e 459
1.10.3 Servers and Network Option 471
1.10.4 Compute Level Options 484
1.10.5 OpenStack Configuration 487
110,68 VPP VL AN 493
1.10.7 L3 Fabric Deployment Details 495
1.11 Supporting RMA for AUIO-TOR e e e 499
112 OptioNal SEIVICES . . . oot 500
1.12.1 Heat and Ceilometer e 501
12,2 I10NIC SUPPOIt . . e et 502
1128 LDAP SUPPOIt . o o e 504
143 Baremetal INStanceso 506
1.14 VM Resizing and Migration 508
1.15 Supported Integration 510
1151 NetAPp Integrationo e 511
1.15.2 Enabling SolidFire e e 512
11583 Enabling Zadara 513
1.15.4 Enabling Auto-TOR via ACT APl . . 515
1.15.5 Updating APIC Parametersttt e 519
1.15.6 Red Hat IDM . .o 521
1.15.7 Swift Integration o 522
1.16 Supported Features 525
1.16.1 Platform SeCUNItYot e 526
1.16.2 Enabling NFVBENCN . .. oo 531
1.16.3 Customization of Edge 534
1.16.4 Installation MOde e 536
1.16.5 OpenStack Features 537
1.16.5.1 MemOry/CPU USAQEottt ittt it e e e e e e e e e e e e e e 538

1.16.5.2 DHCP ReServations e e e e e 540

1.16.5.3 Trusted Virtual FUNCHIONS e e e e e e 541

1.16.5.4 BUffer Size SetUpo e 542

1.16.6 VPP Port Mirroring USageottt e e e e e e e e e 543
1.16.7 VXLAN-EVPN SetUp . .. o e e e 546
1.16.8 Head-End Replication Option 548
1.16.9 Enabling BGP AQJAaCENCYttt e 549
1.16.10 Neutron Port Rebinding oo 550
1.16.11 Managing Provider/Tenant VLAN RaNges e e 552
1.16.12 Migrate SRIOV 554
1.16.13 Augmenting VIC/NIC Podsot e e e e e e e e e 555
116,14 P-GPU . o 556
1.16.15 SR EV PN o e 557
1.16.16 Cinder Volume Multi-attach 559
1.16.17 Virtual GPU SUPPOIt . . .o e e e 561
1.16.18 Forwarding EFK LOgSsot e 562
1.16.19 Network File System 563
1.16.20 TTY LOGGING - vttt et et e e e e e e e e e e e e e e 564
1.16.21 Branding VM WOrKIOad e 565
147 Cisco VIM Update 566
1.17.1 Prerequisites and ASSUMPLIONSo e e e 567
1.17.2 Updating Cisco VIM in Running Cloud e 568
1.17.3 Updating Cisco VIM UsiNg USBt e e e e e e e e e e e 569
1.17.4 Updating Cisco VIM Using Network Installation e e e e 572
118 ADMINIS ratiON . . 573
1.18. 1 Managing Pods 574
1.18.1.1 General GUIdElINES o e 575

1.18.1.2 Identifying Installer Directory e 578

1.18.1.3 Managing HoSts 579

118,14 Pod RECOVEIY . .. 582

1.18.1.5 Management Storage [P e 585

118 1.6 NUMA Pinning ..ottt e e e e e e e e e e e e 586

1.18.2 Managing Scheduler Filters 587
1.18.3 Monitoring Cisco NFVI Health e 588
1.18.4 Assessing Cisco NF VI Status i e e e 591
1.18.5 Service Catalog URL 595
1.18.6 Checking Network Connections e e e e 598
1.18.7 General Scheme of Enabling Optional Services e 599

1.18.8 Managing VIM Administrators e 600

1.18.9 Read-only OpenStack RoOle e 603
1.18.10 Managing Power and Reboot 605
11811 S ECUNEY . . oottt e 609
118111 Verification 610
1.18.11.2 Reconfiguration of CVIM Parameters e 614
1.18.11.3 Cloud Settings oot e 622
1.18.11.4 Fernet Key Operationso e e e e 623
1.18.11.5 Certificates o 624
1.18.11.6 LDAP AD Support with Keystone V3 627
1.18.11.7 NetApp from http to https o 629
1.18.11.8 Hardening Cisco VIM Deployment e e e 630
1.18.11.9 Securing Management NOde 632
1.18.11.10 LDAP Authentication for Kibana 636
1.18.11.11 Enabling Barbican 638
1.18.11.12 Enabling Management Network over TLS e 640
1.18.11.13 Usage of Pre-encrypted IMagesot e e 642
118,12 StOragE . o ot it it 646
1.18.12.1 Storage ArchiteCture e e 647
1.18.12.2 Ceph StOrage . . .ot 648
118.12.3 GlanCe .. .o 654
1.18.12.4 CINAEr . .ot 656
18125 NOVA .« ottt 658
1.18.12.6 Docker Disk Space USageottt e e e e 661
1.18.13 Monitoring with CVIM-MON e e e e e e e 662
1.18.13.1 Alerting Rules Customization 663
1.18.13.2 Alert Manager and Receiver Customization 667
1.18.13.3 SHlENCING AlBItS . . . o 671
1.18.14 CVIM Pod Migration from Micro to FUIl 676
1.19 Backup and Restoreo 678
1.19.1 Backing Up Management Node 679
1.19.2 Restoring Management NOde e e e 681
1.19.3 Management Node AUutobackup e 684
1.19.4 Management Node Migration 685
1.19.5 Backing Up UM NOGEo e e e e e 686
1.19.6 Restoring UM NOGEot e e e e e e e 690
1.20 Managing Cisco VIM Software HUD 692
1.21 Troubleshooting 696
1.21.1 CisCO NFVINOGE . .o e e e 697
1.21.2 Pre-checks for Storage Removal 701
1.21.3 General Troubleshooting ProcedUures e e e e e 703
1.21.4 Connection/Installation Problems e 706
1.21.5 Management Node Recovery SCenariosttt 708
1.21.6 Compute Node RECOVEIY SCENAMOttt e e e e e e e e e e e 717
1.21.7 Technical SUPPOrt TOOIS e e e e 720
1.21.8 Disk and OSD Maintenance TOOISttt e e e e e e e e e e 724
T.21.9 Utility TOOl . .ot e e e 730
1.21.10 Cisco VIM Client Debug Option o e e e e 732

1.22 WirNG Diagramsot 736

Cisco VIM 4.0.0 Release Notes
Cisco VIM 4.0.0 Release Notes

Release Date

Introduction

Features of Cisco VIM
Documentation

Known Caveats

Using the Cisco Bug Search Tool

Release Date
First Published: January 15, 2021
Updated:

January 21, 2021: Added the Documentation section to include a list of pages that are updated.
January 27, 2021: Updated the Documentation section.

January 28, 2021: Updated the Documentation section.

February 05, 2021: Updated the Documentation section.

February 08, 2021: Updated the Documentation section.

February 09, 2021: Updated the Documentation section.

February 10, 2021: Updated the Documentation section.

February 19, 2021: Updated the Documentation section.

March 10, 2021: Updated the Documentation section.

March 26, 2021: Updated the Documentation section.

Introduction

Cisco Network Function Virtualization Infrastructure (Cisco NFVI) provides the virtual layer and hardware environment in which virtual network functions
(VNFs) operate. VNFs provide a well-defined network function that offers routing, intrusion, detection, Domain Name Service (DNS), caching, Network
Address Translation (NAT), and other network functions. While the network functions required a tight integration between a network software and hardware
in the past, VNFs decouple the software from the underlying hardware.

Cisco NFVI 4.0.0 is based on the Trains release of OpenStack, an open source cloud operating system that controls large pools of compute, storage, and
networking resources. The Cisco version of OpenStack is Cisco Virtualized Infrastructure Manager (Cisco VIM). Cisco VIM manages the OpenStack
compute, network, and storage services, and all Cisco NFVI build and control functions.

Key roles of Cisco NFVI pods are:

® Control (including Networking)

® Computes

® Storage

® Management, logging, and monitoring

Hardware used to create the Cisco NFVI pods include:

® Cisco Unified Computing System (UCS) C240 M4 or C240 M5 or C220 M5: Performs management and storage functions, and services. Includes
dedicated Ceph (UCS 240-M4 or UCS 240-M5) distributed object store and the file system. Only Red Hat Ceph is supported.

Cisco UCS C220/240 M4 or M5: Performs control and compute services.

HP DL 360 Gen9: Supports as a third-party compute where the control plane is Cisco UCS server.

Dell PowerEdge R740: Supports as a third-party compute with Cisco UCS server as control and ceph node (on Intel XXV710 NIC).

Combination of M5 series servers for VIC or NIC (40G) based hyper-converged and Micropod offering.

Quanta servers: Used as an alternate for Cisco UCS servers for the cloud installation at the core and edge. Supports automated installation of the
Central Ceph cluster for providing Glance image services to the edge pod.

® Cisco VIM UCS based pod to act as a Central Ceph cluster for Glance image services.

The UCS C240 and C220 servers are M4/M5 Small Form Factor (SFF) models, where the operating systems boot from Hard Disk Drive (HDD)/Solid State
Drive (SDD) for control/compute nodes, and boot from internal SSD for Ceph nodes. Cisco supports pure Intel NIC configuration and Cisco 40G VIC with
Intel NIC configuration.

Software applications that manage Cisco NFVI hosts and services include:

® Red Hat Enterprise Linux (RHEL) 8.2 with OpenStack Platform 16.1: Provides the core Operating system with OpenStack capability. RHEL 8.2
and OSP 16.1 are installed on all Cisco NFVI UCS servers.

® Cisco VIM: An OpenStack orchestration system that helps to deploy and manage an OpenStack cloud offering from bare metal installation to
OpenStack services, considering the hardware and software redundancy, security, and monitoring. OpenStack Trains release with more features
and usability enhancements are tested for functionality, scale, and performance.

® Cisco Unified Management (UM): Deploys, provisions, and manages Cisco VIM on Cisco UCS servers. It provides Ul to manage multiple pods,
when installed on a dedicated server Unified Management node.

® Cisco VIM Monitor: Used to provide integrated monitoring and alerting of the NFV Infrastructure layer.

® Cisco UCS Manager: Used to perform certain management functions, when UCS B200 blades are installed.

® Cisco Integrated Management Controller (IMC): When installing Cisco VIM, Cisco IMC 4.x or later is recommended.

Following is the list of Cisco IMC versions with which Cisco VIM is tested:

UCS-M4 ® Cisco recommends Cisco IMC 4.0(2L).

servers ® Extended support of 4.0(1a), 4.0(1b), 4.0(1c), 4.0(2L)

UCS-M5 Support CIMC 3.1(2b), 4.0(1a), 4.0(1c), 4.0(2f), 4.0(4d), 4.0(4L), 4.0(4m)*, and 4.1(2a)*
servers Recommended to use 4.0(4L).

Do not use 3.1(3c) to 3.1(3h), 3.0(4a), 4.0(2c), or 4.0(2d).

A minimum bundle version of CIMC 4.0(4d) is required for Cascade Lake support.
For GPU support, you must ensure that the server has CIMC 4.0(2f).

For UCS-C240, use 4.1(2d) or higher.

1 "lIndicates that it is tested with Intel NIC BOM.

Other versions of CIMC may work, but you must test Cisco VIM deployment with those versions before rolling
it into production.

Layer 2 networking protocols include:

® VLAN supported using Open vSwitch (OVS).
® VLAN supported using ML2/VPP. It is supported only on Intel NIC.

For pods based on C-series with Intel NIC Single Root I/O Virtualization (SRIOV), the SRIOV allows a single physical PCI Express to be shared on a
different virtual environment. The SRIOV offers different virtual functions to different virtual components over the same physical NIC.

If you use only VIC, VPP as a mechanism driver is not supported.

Features of Cisco VIM

Cisco VIM is the only standalone fully automated cloud lifecycle manager offered by Cisco for the private cloud. It integrates with Cisco UCS C-series
servers, Cisco VIC and Intel NIC. It helps cloud administrators set up and manage private clouds.

The following are the features of Cisco VIM:

Feature Name Comments
Infrastructure,
OpenStack & ® RedHat 8.2 Z4 EUS Kernel (11/4/202) and OSP16.1.2 (11/25/2020)*

Ceph version
® RHEL 8.2 Version: 4.18.0-193.28.1.el8_2.x86_64

* RHEL 8.2 Real Time Version: 4.18.0-193.14.3.rt13.67.e18_2.x86_64
® Ceph4.1*
® Python 3.6.8*
® Docker 19.03.9*

Hardware
support matrix UCS C220 M4 controller or compute with Intel V3 (Haswell)

UCS C240/220 M4 controller or compute with Intel V4 (Broadwell)

UCS C240/220 M5 controller or compute with Intel Skylake or Cascade Lake

HP DL360 Gen 9 with control plane on Cisco UCS M4 servers

Dell PowerEdge R740 with control plane on Cisco UCS M5 servers (with XXV710)

UCS C220/240 M5 in a Micropod environment, with an option to add up to 16 UCS C220/240 M5 computes

UCS C240/220 M5 controller or compute with Intel X710 NIC, SR-IOV, and Cisco Nexus 9000 or Cisco NCS 5500 series
switch as ToR

UCS C240/220 M5 servers with Cisco 1457 (for control plane) and Intel XXV710 NIC (for data plane with VPP) and SR-IOV
Support of physical GPU in M5

Support of UCS-C240 for edge deployment of the cloud*

Support of vGPU in M5 (Tech-preview)

of the cloud

Quanta sever support with Skylake or Cascade Lake Intel CPUs

Quanta servers for Central Glance (D52BQ-2U 3UPI) server to offer glance image services to edge pod. Also, offers
equivalent BOM with UCS-M5 servers.

® SATA M.2 (960G) as an option for a boot drive

® Support of both HDD and SSD based management node or UM node

® UCS 220/240 M5 in a nano-pod environment with 2-X710 Intel NIC or 25G/40G VIC/NIC BOM

NIC support
® Cisco VIC: VIC 1227, 1240, 1340, 1380, 1387 (for M5) in 40G VIC/NIC offering, 1457
® Intel NIC: X710, 520, XL710, xxv710 (25G)

Quanta servers as an alternative to Cisco UCS servers for fullon, micro (D52BQ-2U 3UPI), and edge (D52BE-2U) deployment

Pod type

ToR support

IPV6 support for
management
network

Centralization of
management
node

Dedicated control, compute, and storage (C-series) node running on Cisco VIC (M4) or Intel X710 (for M4 or M5) (full on) with
Cisco Nexus 9000 or Cisco NCS 5500 series switch (only for Intel NIC and VPP as mechanism driver) as ToR.
For fullon pods based on Quanta (D52BE-2U) servers, the NIC is xxv710 (25G) with Cisco Nexus 9000 as ToR.

Support of UCS-M4 compute (10G VIC with 2-XL710) with UCS-M5 (Cisco VIC 1457 with 2-XL710).

Dedicated control, compute, and storage (C-series) node running on Cisco VIC and Intel NIC (full on) with Cisco Nexus 9000
as ToR. Only SRIOV is supported on Intel NIC.

Support of Intel X520 (with 2 NIC cards or compute) on M4 pods or XL710 (2 or 4 NIC cards or compute) on M4/M5 pods for
SRIOV cards in the VIC/NIC combination.

For M4 pods, VIC or NIC computes running XL710 and X520 can reside in the same pod. Few computes can run with or
without SRIOV in a given pod.

Dedicated control, compute, and storage (UCS M5 SFF C-series) node running on Cisco VIC 1457 and Intel xxv710 NIC (full
on) with Cisco Nexus 9000 as ToR. Only SRIOV is supported on Intel NIC. With VPP and OVS as the mechanism driver, the
number of SRIOV ports are 2 or 4, respectively.

Micropod: Integrated (AlO) control, compute, and storage (C-series) node running on Cisco VIC, Intel X710X, or VIC and NIC
combinations. Micropod can be optionally expanded to accommodate more computes (up to 16) running with the same NIC
type. This can be done as a Day 0 or Day 1 activity. The computes can boot off HDD or SSD. From Cisco VIM 3.4.1, the
Micropod option has been extended to Quanta (D52BE-2U) servers with Intel XXV710 NIC (25G) and Cisco Nexus 9000 (-FX
series) as ToR.

Hyper-converged on M4 (UMHC): Dedicated control and compute nodes with all storage acting as compute nodes (M4 C-
series) and running on a combination of 1xCisco VIC (1227) and 2x10GE 520 or 2x40GE 710XL Intel NIC with an option to
migrate from one to another. You can extend the pod to M5-based computes with 40G Cisco VIC along with 2x40GE 710XL
NIC (optionally).

NGENA Hyper-Converged (NGENAHC): Dedicated control and compute nodes, with all storage acting as compute (C-series)
nodes. All nodes have a combination of 1xCisco VIC (1227) for control plane, and 1x10GE 710X Intel NIC for data plane over
VPP.

Support of M5 as a controller and hyper-converged nodes (with 1457 for the control plane, and 1x10GE X710 (2 port) Intel
NIC for data plane) in an existing M4 based pod.

Hyper-converged on M5: Dedicated control and compute nodes with all storage acting as compute (C-series) nodes, running
on a combination of 1xCisco VIC (40G) and 2x40GE 710XL Intel NIC.

Support of M5 as controller and hyper-converged nodes (with 1457 for control plane, and 1x10GE X710 (2 port) Intel NIC for
data plane) in an existing M4-based pod.

Edge: Accommodates restricted power and limited rack space. Quanta (D52BQ-2U 3UPI) or UCS-C240* servers with three
converged control and compute nodes, expandable to 16 additional compute nodes. The edge cloud communicates with
Quanta/UCS server based Central Ceph cluster for glance service. Persistent storage is not available.

Ceph: Designed to provide glance image services to edge cloud. Quanta (D52BE-2U)/UCS-M5 servers with three converged
cephcontrol and cephosd nodes, expandable to additional cephosd nodes for additional storage. Support of UCS based pod
for glance image services

® |n afull-on (VIC based), or hyper-converged pod, computes can either have a combination of 1-Cisco VIC (1227)
and (2x10GE 520/2x40GE 710XL Intel NIC) or 1-CiscoVIC (1227). The compute running pure Cisco VIC does not
run SR-IOV. In 2.4, Cisco supports HP DL360 Gen9 and Dell PowerEdge R740 as a third-party compute.

® Cisco VIM does not support a combination of computes from different vendors.

Support of Cisco NCS 5500 (with recommended Cisco I0S XR version 6.1.33.02I or 6.5.1) with splitter cable. Day 0
configuration can support user-defined route-target and ethernet segment ID (ESI).

Supports two or more Cisco NCS 5500 with ships in the night. In this case, the Cisco NCS 5500 configuration is set ahead of
time before the pod installation commences.

NXOS support (preferably N9K)

Static IPv6 management assignment for servers.

Support of IPv6 for NTP, DNS, LDAP, external syslog server, and AD.
Support of IPv6 for the cloud APl endpoint.

Support of CIMC over IPv6.

RestAPI over IPv6.

Support for IPv6 filters for administration source networks.

Support of UM over IPv6.

Value Engineering to reduce the overhead of one physical server per pod. Supports management node, Unified Management
node, and Cisco VIC software hub.

Mechanism
drivers

SDN controller
integration

Installation or
update method

Scale

Automated pod
life cycle
management

Platform security

OVS/VLAN, VPP (20.09)*/VLAN (Fast Networking, Fast Data FD.io VPP/VLAN, based on the FD.io VPP fast virtual switch over
intel NIC).

ACI (ships in the night or ToR automation using APIC API) with Cisco VIC/Intel NIC on the UCS C-series M4 platform, and with
Intel NIC on Quanta (D52BQ-2U 3UPI) servers.

¢ Fully automated online or offline installation.

® Support of offline installation via USB or file-based image.

® Support of Cisco VIM Software Hub to mitigate the problem associated with the logistics of USB distribution for air-gapped
installation.

® Support of USB 3.0 64GB for M5 and Quanta-based management node. Support of UCS 2.0 64GB for M4-based
management node.

® Full Pod: Total of 128 nodes (compute and OSD) with Ceph OSD max at 20.

1 Ensure that you deploy a maximum of 60 nodes at a time. Also, after Day 0, you can add only/remove one ceph node at
a time.

® Micro/Edge pod: Supports a maximum of 16 standalone compute nodes.
® Hyper-converged (HC): Total of 64 nodes including three controllers is available. Maximum of 15 HC (compute and OSD)
nodes is supported.

1 Ceph OSDs can be HDD or SSD based, but must be uniform across the pod. Computes can boot off 2x1.2TB HDD or
2x960 GB SSD). In the same pod, some computes have SSD, while others can have HDD.

Contact Cisco VIM product management team for specific use case and BOM details applicable for each type of pod.

Add or remove compute and Ceph nodes and replace the controller node.

Static IP management for storage network.

Reduction of tenant or provider VLAN through reconfiguration to a minimum of two.
Reconfiguration of passwords and selected optional services.

Automated software update.

® Secure OS, RBAC, network isolation, TLS, source IP filtering (v4 and v6), Keystone v3, Bandit, CSDL-compliant, hardened
OS, and SELinux.

Change CIMC password post-installation for maintenance and security.
Non-root login for administrators.

Read-only role is available for OpenStack users.

Enabling custom policy for VNF Manager.

Option to disable the management node reachability to the cloud API network.
Hosting of Horizon behind NAT or with a DNS alias.

Cinder volume encryption using Linux Unified Key Setup (LUKS).
Support of configurable login banner for SSH sessions.

Access to management node using Open LDAP or via MS AD

Support for IPv6 filters for administration source networks.

Introduction of Vault to encrypt secrets with reconfigure option.
Enablement of Vault as an option on Day 2.

Extended permit_root_login to Unified Management node.

CIMC authentication using LDAP.

Support of RedHat identity, policy and audit (IPA) system.

Support of Horizon and Keystone login settings.

Support of LDAP on Unified Management node.

SSH and password vulnerabilities for management node.

Kernel changes to address vulnerabilities.

Support of FPGA 1.1 image for Quanta GC SKU (2RU1N).

FQDN support for Cisco VIM management API.

LDAP support for Kibana.

Support of TLS over management network.*

Support of Barbican using HSM.*

http://FD.io
http://FD.io

Enhanced
Platform
Awareness (EPA)

HA and
Reliability

Unified
Management
(UM) support

Cisco VIM
monitor

Central logging

External Syslog
servers

VM migration

Pod Migration

Storage

Monitoring

Optional
OpenStack
features

Support of
external
authentication
system

Software update

CIMC upgrade
capability

Supports NUMA, CPU pinning, huge pages, and SRIOV with Intel NIC.

Ability to set HYPERTHREADING at a global level or per compute basis.

Ability to set VM_HUGEPAGE_SIZE and VM_HUGEPAGE_PERCENTAGE at a global level or per compute basis.
Ability to allocate user-defined CPU (up to 6) cores to VPP.

Ability to bring in trusted_vf as a reconfigure option on a per server basis.

Ability to allocate user-defined CPU (up to 12) cores to Ceph for Micropod and hyper-converged nodes.
Ability to allocate user-defined CPU (up to 30) cores to compute nodes.

Ability to set LIBVIRT_WRITETHROUGH_CACHE at global or per compute basis.

Ability to set ISOLCPU at a global level or per compute basis.

Ability to set VIC_link_training at global level or per compute basis.

Improve OSD failure detection time

Ability to allocate user-defined memory (16 to 32 GB) to Ceph for Micropod and hyper-converged nodes.
Ability to allocate user-defined memory (25 to 500 GB) for compute nodes.

Ability to support custom mapping between OpenStack physnet to SRIOV PF.*

Redundancy at hardware and software level.

Automated backup and restore of the management node.

Relaxation of Security Enhanced Linux (SELinux) requirement for backup and restore of the management node.
Optimization of automated backup and restore of the management node in a connected installation.

Single pane of glass in a single mode. Supports multi-tenancy and manages multiple pods from one instance.

Collects the metrics from the entire pod. Supports customizing alerts, sending SNMP traps, and exporting to external metric
collectors.

EFK integrated with external Syslog (over v4 or v6) for a log offload, with optional support of NFS with EFK snapshot.

Supports multiple external Syslog servers over IPv4 or IPv6. The minimum and maximum number of supported external Syslog
servers are 1 and 3, respectively.

Cold migration and resizing.
NUMA-aware live migration with Virtio and SRIOV.*

Seamless migration of a Micropod to a full pod.

Block storage with Ceph or NetApp.

Option to use Ceph for Glance and SolidFire for Cinder.

Option to have multi-backend (HDD and SSD based) Ceph in the same cluster to support various I/O requirements and
latency.

Integration of Zadara as an alternate to Ceph.

Support of ObjectStore (via Swift) with SolidFire as backend.

Monitor the Cisco VIM pods centrally using the Highly Available Cisco VIM Monitor (HA CVIM-MON) over v4 and v6.

Monitor the Cisco VIM pods individually using the local Cisco VIM Monitor (CVIM-MON) over v4 and v6.

CVIM MON local LDAP support with Grafana, Prometheus, and Alert Manager.

Support of non Cisco VIM managed external servers running RHEL or CentOS.

Ceilometer for resource tracking and alarming capabilities across core OpenStack components is applicable only for fullon pod.

Enable trusted virtual function on a per-server basis.

DHCP reservation for virtual MAC addresses.

Enable VM_HUGE_PAGE_SIZE and VM_HUGE_PAGE percentage on a per-server basis.

Enable CPU and RAM allocation ratio on a per-server basis via add/remove compute or reconfigure.

LDAP with anonymous bind option.
Active Directory (AD).

Update of cloud software for bug fixes on the same release.

Central management tool to upgrade the CIMC bundle image of one or more servers.

VPP port
mirroring

VXLAN extension
into the cloud

Technical
support for CIMC

Enable TTY
logging as an
option

Unified
Management
authentication

CIMC
authentication
using LDAP

Automated
enablement of
Intel X710/XL710
NIC's PXE
configuration on
Cisco UCS-C
series

Power
management of
computes

Fan policy for
servers

Disk
maintenance for
pod nodes

Branding of VM
workload

Support of
workload types

Cloud adaptation
for low latency
workload

Integrated test
tools

® Ability to trace or capture packets for debugging and other administrative purposes.
® Automated update of BMC or BIOS and firmware of Quanta server.

® Extended native external VXLAN network into VNFs in the cloud.

® Support of Layer 3 adjacency for BGP.

® Support of single VXLAN network or multi-VXLAN network (with head-end-replication option) terminating on the same
compute node.

® Support of re-binding of Neutron port to another port.

® Support of L3 fabric via VXLAN*

1 Only two-VXLAN network is supported.

Collection of technical support for CIMC.

Enables TTY logging and forwards the log to an external syslog server and EFK stack running on the management node.
Optionally, it forwards the log to the remote syslog if that option is available.

Authentication support through local and LDAP.

Authentication support through LDAP.

Utility to update Intel X710/XL710 NIC's PXE configuration on Cisco UCS C-series.

Option to selectively turn OFF or ON the power of computes to conserve energy.

Option to set fan policy globally for UCS C-series based pod.

Ability to replace faulty disks on the pod nodes without the need to add, remove, or replace node operation.

Ability to check whether the VMs are running on Cisco VIM platform.*

® Supports baremetal (ironic-based) based workloads.
® Supports bonding on the Ironic network.

Enable real-time kernel to support edge pod.

Automated BIOS configuration.

Introduction of custom flavor.

Support of Intel N3000 card on selected servers to handle vRAN workloads.

Support of Cache Allocation Technology (CAT) to handle vRAN workloads.

Support of INTEL_SRIOV_VFS (SRIOV support for Intel NIC) and INTEL_FPGA_VFS (support for Intel N3000 FPGA card) at
a per-server level.

® Open-source data plane performance benchmarking: VMTP (an open-source data plane VM to VM performance
benchmarking tool) and NFVbench (NFVI data plane and a service chain performance benchmarking tool).

® Extending VMTP to support v6 over the provider network.

® NFVbench support for VXLAN.

® Services Health Checks Integration: Cloudpulse and Cloudsanity.

1 " lIndicates the features introduced in Cisco VIM 4.0.0.

® For supported BOM details, reach out to nfvi-pIm@cisco.com or your Account Team.

® Configure LACP on the data plane ports of the Cisco Nexus 9000 ToR when Cisco VIM is running on Intel NIC for data plane with VPP
as the mechanism driver. When Cisco NCS 5500 is ToR (with VPP), the LACP configuration on the data plane is done through auto-
ToR configuration feature of Cisco VIM.

Documentation

The following sections are updated for Cisco VIM 4.0.0:

HA CVIM-MON Installer, Setup File and Software Hub (addressed CSCvx07673)

Cisco VIM Software Hub, NFVI Installation Setup via USB, and NFVI Installation File-Based Image (fixed CSCvx07673)
UM Overview, Updating Nodes, Custom Grafana Dashboards, HA CVIM-MON Installer (CSCvx07673)

Managing VIM Administrators, Alert Rules, and Alert Manager

Managing Cisco VIM Software Hub

Known Caveats
The following list describes the known caveats in Cisco VIM 4.0.0:
® CSCvw34928
Cisco VIM central-vm is out of sync with RestAPI| database, post removal of compute on base deployment.
® CSCvw20577
Nova console historical logs are not transferred after live-migration of instances.
® CSCvt33521
Reconfiguration fails during validation, after the renewal of TLS certificate.
® CSCvj87681
Validation intermittently fails during configuration of auto-tor with Cisco NCS 5500.
® CSCvw84323
HA CVIMMON: The password regeneration for Minio is skipped.
® CSCvw31691

The Cisco VIM control and compute nodes running VPP, failed to connect with network post power-cycle.
® CSCvw95025

In MGMT_TLS enabled pod, Rabbitmq goes in partitioned cluster state intermittently
® CSCvw81826

In Unified Management, pod user can be added across multiple roles for same pod.
® CSCvx04386

Update of Cisco VIM hangs on edge pod running RT kernel.

Using the Cisco Bug Search Tool
You can use the Bug Search Tool to search for a specific bug or to search for all bugs in a release.
Procedure
1. Go to the Cisco Bug Search Tool.
2. In the Log In screen, enter your registered Cisco.com username and password, and then click Log In. The Bug Search page opens.

3. To search for a specific bug, enter the bug ID in the Search For field and press Enter.
4. To search for bugs in the current release:

https://tools.cisco.com/bugsearch/
http://Cisco.com

In the Search For field, enter Cisco Network Function Virtualization Infrastructure with release version and press Enter. (Leave the

other fields empty.)
b. When the search results are displayed, use the filter tools to find the types of bugs you are looking for. You can search for bugs by

status, severity, modified date, and so forth.

To export the results to a spreadsheet, click the Export Results to Excel link.

Cisco NFVI Architecture
Cisco NFVI Architecture

Cisco NFVI Overview

Cisco VIM Overview

Networking Overview

UCS C-Series Network Topologies
Management Node Networking
IPv6 Support

UCS C-Series

High Availability

Storage Node Overview
OpenStack Telemetry Service
NFVBench

Auto-ToR Configuration via ACI API
NCS-5500 as ToR Option

Disk Management

OSD Maintenance

Power Management

Physical Cores and Reserved Memory
Software Hub

VXLAN EVPN Design

VPP Port Mirroring Support
Segment Routing EVPN
Container Workload

Management Node Centralization
L3 Fabric Deployment

OpenStack Barbican

Management Network Over TLS
Support of Pre-encrypted Image

Cisco NFVI Overview

Cisco Network Function Virtualization Infrastructure Overview

Cisco Network Function Virtualization Infrastructure (NFVI) provides the virtual layer and hardware environment in which virtual network functions (VNFs)
can operate. VNFs provide well-defined network functions such as routing, intrusion detection, domain name service (DNS), caching, network address
translation (NAT), and other network functions. While these network functions require tight integration between network software and hardware, the use of
VNF enables to decouple the software from the underlying hardware.

The following figure shows the high-level architecture of Cisco NFVI.

Virtualized Network Functions (VNFs)

NFV Infrastructure (NFVI)

Virtual Virtual Virtual
Compute Storage Neatwork

Virtualization Layer

e o

Hardware resources

Cisco NFVI includes a virtual infrastructure layer (Cisco VIM) that embeds the Red Hat OpenStack Platform (OSP 16.1). Cisco VIM includes the Train
release of OpenStack, which is an open source cloud operating system that controls large pools of compute, storage, and networking resources. Cisco
VIM manages the OpenStack compute, network, and storage services, and all NFVI management and control functions. Cisco VIM is an embedded
solution, and must be treated as one or else it violates the support agreement of the product. The activities such as changing system files and directories,
installing/upgrading rpms and/or enabling repositories outside Cisco VIM, are examples of such violations. For clarifications, reach out to Cisco support.

Key Cisco NFVI roles include:

® Control (including Networking)

® Compute

® Storage

® Management (including logging, and monitoring)

Hardware that is used to create the Cisco NFVI pods includes a specific combination of the following based on pre-defined BOMs. For more details,
contact Cisco VIM Product Management.

® Cisco UCS® C240 M4/M5: Performs management and storage functions and services. Includes dedicated Ceph (UCS 240-M4 or UCS 240-M5)
distributed object store and file system. (Only Red Hat Ceph is supported).

Cisco UCS C220/240 M4/M5: Performs control and compute services.

HP DL360 Gen?9: It is a third-party compute where the control plane is Cisco UCS servers.

Cisco UCS 220/240 M4/M5 (SFF): In a Micropod environment, it is expandable to a maximum of 16 computes.

Cisco UCS B200 M4 blades: It can be used instead of the UCS C220 for compute and control services. The B200 blades and C240 Ceph server
are connected with redundant Cisco Fabric Interconnects managed by UCS manager.

A combination of M5 series servers are supported in M5-based Micropod and VIC/NIC (pure 40G) based hyper-converged and micropod offering.
Quanta servers are an alternative to Cisco UCS servers: Use of specific Quanta servers for the installation of the cloud both at the core and edge.
An automated install of the Central Ceph cluster to the edge pods is supported for Glance image services.

® UCS 220/240 M5 in a nano-pod environment with 2-X710 Intel NIC or 25G/40G VIC/NIC BOM

The UCS C240 and C220 servers are of type M4 or M5 Small Form Factor (SFF) models where the nodes can boot off a pair of HDDs or SSD as specified
in BOM.

The Cisco VIM installer performs bare metal installation and deploys OpenStack services using Docker™ containers to allow for OpenStack services and
pod management software updates.
The following table shows the functions, hardware, and services managed by Cisco NFVI nodes.

Function Numb Hardware Services
er

Manage 1

ment
Control ' 3
Compute 2+
Storage 3 or
more
Top of 1or
Rack more
(ToR) pairs

UCS C240 M4 SFF with 8, 16, or 24 1.2 TB HDDs (24 is
recommended)

UCS C240 M5 SFF with 8, 16, or 24 1.2 TB HDDs (24 is
recommended)

UCS C220 M5 SFF with 8x1.2 TB HDDs

Quanta server (D52BE-2U) with 2x1.2TB HDD

Quanta server (D52BQ-2U 3UPI) with 2x.3.8TB HDD

UCS C220/C240 M4/M5 with 2x1.2 TB HDDs or 2x960 GB SSDs
(in a Micropod or Full pod environment)

Quanta server (D52BE-2U) with 2x960 GB SSD

Quanta server (D52BQ-2U 3UPI) with 2x960 GB SSD for edge pod

UCS C220/C240 M4/M5 with 2x1.2 TB HDDs, or 2x960 GB SSDs
(in a Micropod or Full pod environment)

HP DL360 Gen9

Quanta server (D52BE-2U/ D52BQ-2U 3UPI) with 2x960 GB SSD

SSD and HDD drives must be in a 1:4 ratio per storage node minimum.
Storage node configuration options: Fullon environment:

UCS C240 M4/M5 with two internal SSDs, 1-4 external SSD, 4-
20x- 1.2 TB HDDs

SSD-based Ceph: UCS C240 M4/M5 with 2 internal SSDs,
minimum of 4 external SSDs, expandable to 24 SSDs

Quanta server (D52BE-2U) HDD Based: 4 SSD 960GB for Journal
+ 16 SAS HDD (16x2.4 TB) for OSD + 2 (2x2.4 TB SAS 10krpm
HDD)

for OS

Quanta server (D52BE-2U) SSD Based: 20 SSD (3.8 TB) OSD + 2
OSBoot (2x3.8TB SSD)

Micropod/UMHC/NGENAHC environment:

UCS C240 M4/M5 with two 1.2TB HDD for OS boot, one/2 SSDs
and 5/10x1.2 TB HDDs

UCS C240 M4/M5 with 2x960GB SSD for OS boot and 4 or 8 x960
GB SSDs

Cisco Nexus 9000 series as a standalone (recommended: nxos 9.3
®3)

Cisco Nexus 9000 switches controlled by ACI

Cisco NCS 5500

Internal SSD is the boot device for the storage node
You can use any ToR that supports virtual port channel. Cisco recommends to use Cisco Nexus 9000 SKUs as ToR, which is released
as part of Cisco VIM.
When Cisco NCS 5500 acts as a ToR, the option of Auto-ToR or ships in night is available similar to that of NXOS. If Auto-ToR option
is used, maximum of two Cisco NCS can be used.

Software applications that manage Cisco NFVI hosts and services include:

Cisco VIM Installer

Cobbler server

Docker Registry

ELK server

CVIM MON components: Prometheus and TSDB

Maria Database/Galera
RabbitMQ

HA Proxy/Keepalive
Identity Service

Image Service
Compute management
Network service
Storage service
Horizon dashboard
Fluentd

Virtual Networking Service
Compute service
Fluentd

Storage service

Cisco NCS 5500 provides ToR service with Cisco VIM running on C-
series and with Intel NIC and VPP as the mechanism driver for
deployment.

® Red Hat Enterprise Linux 8.2 with OpenStack Platform 16.1: Provides the core operating system with OpenStack capability. RHEL 8.2 and OPS
16.1 are installed on all target Cisco NFVI nodes.

® Cisco Virtual Infrastructure Manager (VIM): An OpenStack orchestration system that helps to deploy and manage an OpenStack cloud offering
from bare metal installation to OpenStack services, taking into account hardware and software redundancy, security and monitoring. Cisco VIM
includes the OpenStack Train release with more features and usability enhancements that are tested for functionality, scale, and performance.

® Cisco Unified Management: Deploys, provisions, and manages Cisco VIM on Cisco UCS servers.

® Cisco UCS Manager: Supported UCS manager firmware versions are 2.2(5a) and above.

® Cisco Integrated Management Controller (IMC): Cisco IMC 4.0(4i) or later is supported.

For the Cisco IMC lineup, the recommended version is as follows:

UCS-M4 servers

® Cisco IMC versions are 3.0(3a) or later, except for 3.0(4a). Cisco recommends Cisco IMC 4.0(2L).

® Expanded support of CIMC 4.0(1a), 4.0(1b), and 4.0(1c).

® You can move to 4.0(2f), only if your servers are based on Cisco VIC.

UCS-M5 servers
® Do not use 3.1(3c) to 3.1(3h), 3.0(4a), 4.0(2c), or 4.0(2d).
® Cisco recommends you to use CIMC 4.0(4L).
® For Cascade Lake support, you need a bundle version of a minimum of CIMC 4.0(4d).
® For GPU support, you must ensure that the server is running with CIMC 4.0(2f).
® For UCS-C240, use 4.1(2d) or higher

Enables embedded server management for Cisco UCS C-Series rack servers. Supports Cisco IMC firmware versions of 2.0(13i) or greater for the fresh
install of Cisco VIM. Because of recent security fixes, we recommend you to upgrade Cisco IMC to 2.0(13n) or higher. Similarly, Cisco IMC version of
lineup is supported. For this, you must install Cisco IMC 3.0 (3a) or above.

The Quanta servers also need to run with a minimum version of BMC and BIOS version, which is listed below:

SKU Type BMC Version BIOS Version
D52BQ-2U 3UPI (CDC SKU) 4.68.22 3A11.BT17
D52BE-2U (GC SKU) 4.68.22 3A11.BT17

® Cisco Virtual Topology Forwarder (VTF)—VTF leverages Vector Packet Processing (VPP) to provide high-performance Layer 2 and Layer 3
VXLAN packet forwarding.

Two Cisco VNF orchestration and management applications that are used with Cisco NFVI include:

® Cisco Network Services Orchestrator, enabled by Tail-f—Provides end-to-end orchestration spanning multiple network domains to address NFV
management and orchestration (MANO) and software-defined networking (SDN). For information about Cisco NSO, see Network Services
Orchestrator Solutions.

® Cisco Elastic Services Controller—Provides a single point of control to manage all aspects of the NFV lifecycle for VNFs. Cisco ESC allows you to
automatically instantiate, monitor, and elastically scale VNFs end-to-end. For information about Cisco ESC, see Cisco Elastic Services Controller
Data Sheet.

The following figure shows the NFVI architecture with Cisco NSO and Cisco ESC.

Virtualisation Layer

Hardware Resources

NFVME&Q

B R R RN A R AR R R AR R AR R AR R PR R AR R RN RN AR R R R AR IR AR R R P A R R RN TR AR ARG R R AR AR R B e E

D

At a high level, the NFVI architecture includes a VNF Manager and NFV Infrastructure.

1
® Cisco Network Services Orchestrator
® Cisco Elastic Services Controller

http://www.cisco.com/c/en/us/solutions/service-provider/solutions-cloud-providers/network-services-orchestrator-solutions.html
http://www.cisco.com/c/en/us/solutions/service-provider/solutions-cloud-providers/network-services-orchestrator-solutions.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/elastic-services-controller-esc/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/elastic-services-controller-esc/index.html

2 Cisco NFVI:

Cisco VIM +

Cisco UCS/Quanta/3rd Party Compute and Cisco Nexus Hardware +
Logging and Monitoring Software +

Cisco Virtual Topology Services (optional) +

Accelerated Switching with VPP (optional)

Cisco Unified Management (optional)

Pod Monitoring (optional)

For cloud networking, Cisco NFVI supports Open vSwitch over VLAN as the cloud network solution for UCS C-series, and Quanta pods. Both Quanta and
C-series deployments support provider networks over VLAN.

In addition, with a C-series pod, you can choose to run with augmented performance mechanism by replacing OVS/VLAN with VPP/VLAN (for Intel NIC).

The Cisco NFVI uses OpenStack services running inside containers with HAProxy load balancing and providing high availability to API and management
network messaging. Transport Layer Security (TLS) protects the API network from external users to the HAProxy. Cisco VIM installation also includes
service assurance, OpenStack CloudPulse, built-in control, and data plane validation. Day two pod management allows you to add and remove both
compute and Ceph nodes, and replace the controller nodes. The Cisco VIM installation embeds all necessary RHEL licenses as long as you use the Cisco
VIM supported BOM and the corresponding release artifacts.

The following illustration shows a detailed view of the Cisco NFVI architecture and the Cisco NFVI installation flow.

Legend
B
|]

North Bound APls

MFY-0 and Resowrce OvcheSeration

Wirtual Network Functions

Clsco and Third Party
N5 - Metwork Sendres Orchestrstor enabd

= ﬂ
Metwork VIR

VNF Manager

Vitwalaed Infrastnacture Manager

‘
i
£
i
-
=
T
-
3

Sofware i s & Cgrniaack i
Dusiibution and Irpud Vislidafion HareMesl kst i b s i S s
Far e Sl ¥ . b s i

Cisco VIM Overview
Cisco Virtualized Infrastructure Manager Overview

Cisco Virtualized Infrastructure Manager (VIM) is a fully automated cloud lifecycle management system. Cisco VIM helps to bring up a fully functional cloud
in hours, with integrated end-to-end control and data plane verification in place. Cisco VIM offers fully automated Day 1 to Day n cloud lifecycle
management. These include capabilities such as pod scaling (expansion), software update, upgrade, or reconfiguration parameters, consolidated logging
with rotation and export, software update, and upgrade. These have been implemented in line with the operational and security best practices of the
service providers and enterprises.

The following figure provides the high-level overview of all Day 0 and Day n items of Cisco VIM.

ME-Pod & Wuiti-Sitn, Single Pace of (lass, RBAG, GUI, REST AR1)

Lifecyche Manager
Integrated Tools

Logging & Assurance
Health Checks & Failure Recovery

Control and Data Plane HA tn, S —Cisco VIM
Turn My Ublquitous Security
Packaged —; - —
Softwarm Performance Enhancemant

Integrated SDN Controller

ully Automated installer

- R Hat Esterprme Linux OpenSiasch Padoem [RHEL OS5 "
Fied st Coph Storsgpe Sonsticon OponSteck,

[~ Limux & Storage
Distribisthon

Oparuting Syitemd - M Red Hst Entiipios Lisus (RHEL) and Cits NX-08 [10S-X0R

Networking Overview
Networking Overview

Introduction
AP| Segment
External Segment
Management and Provisioning Segment
Storage Segment
Tenant Segment
Provider Segment
Pod with Intel NICs
® Control Plane
® Data Plane
® SRIOV

Introduction

Cisco VIM supports installation on two different types of pods. The rack C-series based offering supports Cisco NIC. You can choose the C-series pod to
run in a pure Intel NIC environment. Thereby, obtaining SRIOV support on the C-series pod. This section calls out the differences in networking between
the Intel NIC and Cisco VIC installations.

To achieve network level security and isolation of tenant traffic, Cisco VIM segments the various OpenStack networks. The Cisco NFVI network includes
six different segments in the physical infrastructure (underlay). These segments are presented as VLANs on the Top-of-Rack (ToR) Nexus switches
(except for the provider network) and as vNIC VLANs on Cisco UCS servers. You must allocate subnets and IP addresses to each segment. Cisco NFVI
network segments include API, external, management and provisioning, storage, tenant, and provider.

APl Segment

The APl segment needs one VLAN in an externally accessible subnet that is different from the subnets assigned to other Cisco NFVI segments. These IP
addresses are used for:

® OpenStack APl endpoints. These are configured within the control node HAProxy load balancer.
® Management node external connectivity: Ensure that L2/L3 connectivity between the SSH interface (via br_api) of the management node to the
OpenStack API exists, so that tools like VMTP and NFVbench can work.

External Segment

The external segment needs one VLAN to configure the OpenStack external network. You can provide the VLAN during installation in the Cisco NFVI setup
_data.yaml file, but you must configure the actual subnet using the OpenStack API after the installation. Use the external network to assign OpenStack
floating IP addresses to VMs running on Cisco NFVI.

Management and Provisioning Segment

The management and provisioning segment needs one VLAN and one subnet with an address pool that is large enough to accommodate all the current
and future servers planned for the pod for initial provisioning (PXE boot Linux) and for all OpenStack internal communication. This VLAN and subnet can
be local to Cisco NFVI for C-series deployments. You must statically configure management IP addresses of Nexus switches and Cisco UCS server Cisco
IMC IP addresses, through the API segment, but not through DHCP. The management/provisioning subnet can either be internal to Cisco NFVI (that is, in
a lab, it can be a non-routable subnet limited to Cisco NFVI only for C-series pods), or an externally accessible and routable subnet. All Cisco NFVI nodes
(including the Cisco VTC node) need an IP address from this subnet.

Storage Segment

Cisco VIM has a dedicated storage network used for Ceph monitoring between controllers, data replication between storage nodes, and data transfer
between compute and storage nodes. The storage segment needs one VLAN and /29 or larger subnet internal to Cisco NFVI to carry all Ceph replication
traffic. All the participating nodes in the pod will have IP addresses on this subnet.

Tenant Segment

The tenant segment needs one VLAN and a subnet large enough to manage pod tenant capacity internal to Cisco NFVI to carry all tenant virtual network
traffic. Only Cisco NFVI control and compute nodes have IP addresses on this subnet. The VLAN/subnet can be local to Cisco NFVI.

Provider Segment

Provider networks are optional for Cisco NFVI operations but are often used for real VNF traffic. You can allocate one or more VLANS for provider
networks after installation is completed from OpenStack.

Cisco NFVI renames interfaces based on the network type it serves. The segment Virtual IP (VIP) name is the first letter of the segment name. Combined
segments use the first character from each segment for the VIP, with the exception of provisioning whose interface VIP name is "mx" instead of "mp" to
avoid ambiguity with the provider network. The following table shows Cisco NFVI network segments, usage, and network and VIP names.

Network Usage Network Name VIP
Name
Management Management and mx

/Provisioning ® OpenStack control plane traffic. provisioning
® Application package downloads.

® Server management; management node connects to servers on this network.

® Host default route.

L]

PXE booting servers during bare metal installations.

API api a
Clients connect to API network to interface with OpenStack APIs.

OpenStack Horizon dashboard.

Default gateway for HAProxy container.

Integration with endpoints served by swift cluster for object storage, cinder backup service, or Identity

service with LDAP or AD.

Tenant VM to VM ftraffic. For example, VXLAN traffic. tenant t

External Access to VMs using floating IP addresses. external e

Storage Transit network for storage back-end. storage s
Storage traffic between VMs and Ceph nodes.

Provider Network Direct access to existing network infrastructure. provider p

Installer API VIM installer API br_api

® Administrator uses the installer API network to SSH to the management node.
* Administrator connects to installer API to interface with secured services. For example, Kibana on the
management node.

For each C-series pod node, two vVNICs are created using different ports and bonded for redundancy for each network. Each network is defined in sefup_da
ta.yaml using the naming conventions listed in the preceding table. The VIP Name column provides the bonded interface name (for example, mx or a)
while each vNIC name has a 0 or 1 appended to the bonded interface name (for example, mx0, mx1, a0, a1).

The Cisco NFVI installer creates the required vNICs, host interfaces, bonds, and bridges with mappings created between all elements. The number and
type of created vNICs, interfaces, bonds, and bridges depend on the Cisco NFVI role assigned to the UCS server. For example, the controller node has
more interfaces than the compute or storage nodes. The following table shows the networks that are associated with each Cisco NFVI server role.

Management Node Controller Node Compute Node Storage Node
Management/Provisioning | + + + +
API +
Tenant + +
Storage + + +
Provider +** +
External +

1 ** Provider network is extended to controller nodes, when VMs are on provider network with virtio.

The network arrangement on third-party HP compute is slightly different from that of Cisco compute running with Intel NIC, because the HP computes have
2 less NIC ports than that are available in the Cisco Intel NIC BOM.
Following table lists the differences in the network arrangement between the Cisco compute and third-party HP computes.

Network Cisco UCS Ce220/Ce240M4 HPE ProLiant DL360 Gen9 and Quanta Compute Dell
Interface IM5 Compute PowerEdge
R740
samx Management control plane network = N/A Management

control plane
network

samxpet Converged control and data plane Control and data plane network for all other than SRIOV: N/A
network based on NIC configuration

1. Management network on br_mgmt bridge interface with samxpet main interface as one
of the member interface (native VLAN configuration required on the top-of-rack switches)

2. Storage network on the sub-interface
samxpet.<storage VLAN>

3. Tenant and provider networks on veth interface pet/pet-out as one of the member
interface with br_mgmt bridge interface

pet Dedicated data plane network N/A Dedicated data
(based on NIC configuration) plane network
p Provider data plane network Provider data plane network Provider data

plane network

sriov[0-3] Provider data plane SRIOV Provider data plane SRIOV networks Provider data
networks plane SRIOV
networks
s Storage control and data plane Storage control and data plane network Storage control
network and data plane
network
t Tenant data plane network Tenant data plane network Tenant data plane
network

In the above table, p, s, and ¢ stands for provider, storage and tenant network respectively but their actual implementation is part of samx and pet network.
In the initial Cisco NFVI deployment, two bridges are created on the controller nodes and linked with interfaces and bonds. The br_api bridge connects the
API (a) interface to the HAProxy. The HAProxy and Keepalive containers have virtual IPs (VIPs) running for each OpenStack API endpoint. The br_mgmt

bridge connects the Management and Provisioning (mx) interface to the HAProxy container as well.
The following diagram shows the connectivity between Cisco NFVI nodes and networks.

Router

sl 4P

Stedage
Exterrial

Ergider

Ternamt

ARICINERS

VIC Node
Cortroller lopiienal j
Nodes

* For C series, Cisco VI Nore-routable is recommended,
For B series, UCSM IP should be reachable from the management network

Supported Layer 2 networking protocols include:

® VLAN over Open vswitch(SRIOV with Intel 710NIC).

® VLAN over VPP/VLAN for C-series Only.

® SRIOV allows a single physical PCI Express to be shared on a different virtual environment. The SRIOV offers different virtual functions to
different virtual components, for example, network adapters, on a physical server.

The footprint of the cloud offering supported by Cisco VIM has continued to evolve over multiple releases to support customer needs that can vary across

multiple dimensions such as cloud capacity, power, physical space, and affordability. The following table shows the available Cisco NFVI hardware and
data path deployment combinations.

Pod Type NIC Type Hardware Vendor Mechanism Driver ToR Type

fullon Cisco VIC UCS C series M4 OVS/VLAN NIK
UCS C series M5

fullon Cisco VIC UCS C series M4 VTF with VTC (VXLAN) = N9K
UCS C series M5 with 1457 computes
fullon Intel NIC UCS C series M4 OVS/VLAN with SRIOV | N9K
UCS C series M5
fullon Intel NIC Quanta D52BQ-2U 3UPI OVS/VLAN with SRIOV | N9K
fullon Intel NIC UCS C series M4 VPP/VLAN with SRIOV | N9K
UCS C series M5 NCS-5500
fullon VIC for Control & Intel NIC for Data Plane | UCS C series M4 with HP as OVS/VLAN with SRIOV | N9K
third-party Compute
fullon Intel NIC UCS C series M5 with Dell as VPP/VLAN with SRIOV | NCS-5500
third-party Compute
fullon Cisco VIC with Intel NIC UCS C series M4/M5 computes OVS/VLAN (VIC) NOK
UCS C series M5 with SRIOV (Intel NIC)
micro Cisco VIC UCS C series M4 OVS/VLAN NOK
UCS C series M5
micro Intel NIC UCS C series M4 OVS/VLAN NIK
UCS C series M5
micro Intel NIC UCS C series M4 VPP/VLAN N9K
UCS C series M5 NCS-5500
UMHC Cisco VIC with Intel NIC UCS C series M4 UCS C series M5 OVS/VLAN (VIC) NOK
with SRIOV (Intel NIC)
NGENAHC VIC for Control & Intel NIC for Data Plane = UCS C series M4 VPP/VLAN NIK
edge Intel NIC Quanta D52BE-2U OVS/VLAN with SRIOV | N9K
ceph Intel NIC Quanta D52BQ-2U 3UPI N/A NOK
nano Cisco VIC UCS C series M5 OVS/VLAN NOK
nano Intel NIC UCS C series M5 OVS/VLAN N9K

fullon indicates the dedicated control, compute and ceph nodes.

micro indicates converged control, compute, and ceph nodes with expandable computes.

Hyperconverged (HC) indicates the dedicated control and compute nodes, but all ceph nodes are compute nodes.

edge indicates converged control and compute nodes with expandable computes. It communicates with Central ceph cluster for
Glance Image service. Persistent storage is not supported.

® ceph indicates converged cephcontrol and cephosd nodes, with an option to add cephosd nodes for glance image services.

® nano indicates a single node cloud with control and compute functionality with no persistent storage and no scope for expansion. It can
be managed via a virtual or physical management node that is Layer 3 or Layer 2 distance away, respectively, from the nano pod.

® The SRIOV support is applicable for Intel NICs in the pods.
® VTF with VTC is only supported on C-series Cisco VIC.

Pod with Intel NICs

For pods with Intel NICs (X710), the networking is slightly different. You need to have at least two NICs (4x10G) on a single server to support NIC level
redundancy. Each NIC is connected to each ToR (connections explained later in this section). Since vNICs are not supported in the Intel card, bond the
physical interfaces at the host and then create sub-interfaces based on the segment VLAN. Lets call the two NIC cards as NIC_1 and NIC_2 and call their
four ports as A, B, C, D. Unlike Cisco VIC based pod, the traffic here is classified as follows:

1. Control plane.

2. Data plane (external, tenant and non-SRIOV provider network).
3. SRIOV (optional for provider network). If SRIOV is used, the data plane network only carries external and tenant network traffic.

Control Plane
The control plane is responsible for carrying all the control and management traffic of the cloud. The traffic that flows through control plane are:
1. Management/Provision.

2. Storage.
3. APL

The control plane interface is created by bonding the NIC_1 A port with NIC_2 A port. The bonded interface name is called as samx, indicating that it is
carrying Storage, API, Management/Provision traffic (naming convention is similar to Cisco VIC pod). The underlying interfaces (physical interfaces) of the
bonded interface are renamed as samx0 and samx1. samx0 belongs to NIC_1 and samx1 belongs to NIC_2. Sub interfaces are then carved out of this sam
interface based on the storage, APl VLANs. The management/provision traffic is untagged/native VLAN to support pxe booting.

Data Plane
The data plane is responsible for carrying all the VM data traffic. The traffic that flows through the data plane are

® Tenant
® Provider
® External

The data plane is created by bonding the NIC_1 B port with NIC_2 B port. The bonded interface name here is pet, indicating that it is carrying provider,
external and tenant traffic. The underlying interfaces of this bonded interface are visible as pet0 and pet1. petO belongs to the NIC_1 and pet1 belongs to
NIC_2.

In case of OVS/VLAN, the pet interface is used as it is (trunked to carry all the data VLANSs) to the Openstack cloud, as all the tagging and untagging
happens at the Openstack level. In case of Linux Bridge/VXLAN, sub-interface exists for tenant VLAN to act as the VXLAN tunnel endpoint.

SRIOV

For Intel NIC pod, the third port (and optionally the fourth port) from each NIC can be used for SRIOV traffic. This is optional and is set or unset through a s
etup_data.yaml parameter. Unlike the control and data plane interfaces, these interfaces are not bonded and hence there is no redundancy. Each SRIOV
port can have maximum of 32 virtual functions and the number of virtual function to be created are configurable through the setup_data.yaml. The interface
names of the SRIOV are shown as sriov0 and sriov1 on each host, indicating that sriov0 belongs to NIC_1 C port and sriov1 belongs to NIC_2 C port.

The following table summarizes the interface name and type of traffic for each network plane:

Network Usage Type of traffic Interface name

Control Plane | To carry control/management traffic = Storage, APIl, Management/Provision | samx
Data Plane To carry data traffic Provider, External, Tenant pet

SRIOV To carry SRIOV traffic SRIOV sriov0, sriov1, ..
The following table shows the interfaces that are present on each type of server (role based).

Management Node Controller Node Compute Node Storage Node

Installer APl | +

Control plane | + + + +
Data plane + +
SRIOV +

1" On Intel pod, all kinds of OpenStack networks are created using physnet1 as the physnet name.

UCS C-Series Network Topologies
UCS C-Series Network Topologies

Cisco NFVI UCS servers are connected to the ToR switches using Cisco UCS dual-port Virtual Interface Cards (VICs). The VIC is an Enhanced Small
Form-Factor Pluggable (SFP+) 10 Gigabit Ethernet and Fiber Channel over Ethernet (FCoE)-capable PCI Express (PCle) card designed for Cisco UCS C-
Series Rack Servers. Each port connects to a different ToR using a Virtual Port Channel (VPC). Each VIC is configured with multiple vNICs that
correspond to specific Cisco VIM networks. The UCS Cisco IMC port is connected to an out-of-band (OOB) Cisco management switch.

The following figure shows the UCS C-series pod Cisco NFVI host to ToR topology.

ToR-A ToR-B
Nexusoopo AR
Series Switches Ezgz
VPC - Trunks
il
Cisco NFVI kL LoD

Server Nodes

00B Management
(Catalyst Switch)

For Intel NIC, a single two-port Cisco VIC in the preceding figure is replaced with two 4-port 710 Intel NIC. An extra Intel NIC is added to provide card level
redundancy as shown in the figure below:

MIC 1 AMIC 2 A - Control plane Port Channel]
MIC 1 B NIC 2 B - Data plane Port Channel

SRIOV
Data Plane
Control Plane
ﬁ-u ntroller/Compute gl

-

amsx samx@P_vian

samx.storage_vlan

. i y

Of the four ports that are available in each NIC card, port A is used for management traffic (provision, API, storage, etc), whereas the port B is used for
data plane (tenant and provider network) traffic. Port C (and optionally Port D) is dedicated for SRIOV (configured optionally based on setup_data.yaml).
Sub-interfaces are carved out of the data and control plane interfaces to provide separate traffic based on specific roles. While the ports A and B from
each NIC help in forming bonded interface, the ports C and D over which SRIOV traffic for provider network flows are not bonded.

You must take extreme care during pod setup, so that ports A, B and C for the Intel NIC is connected to the ToRs.

You can optionally use port D as the second pair of SRIOV ports with appropriate intent defined in the setup_data.yaml file. From Cisco VIM release 2.4.2
onwards, this port option is available for both M4 and M5 based systems or pods.
The following table provides the default link aggregation member pairing support for the pods based on server type:

Server/POD Type

Target Functions

Default NIC Layout

M4 Intel NIC based

Control Plane

NIC-1 A+ NIC-2 A

Data Plane NIC-1B + NIC-2B
SRIOV 0/1 NIC-1C+NIC-2C
SRIOV 2/3 NIC-1 D + NIC-2 D

M5 Intel NIC based

Control Plane

NIC-1 A+ NIC-1B

Data Plane

NIC-1 C+NIC-1D

SRIOV 0/1

NIC-2 A + NIC-2 B

SRIOV 2/3

NIC-2 C +NIC-2D

1" In M5 pod, a NIC_LEVEL_REDUNDANCY option is available to support the M4 default option for link aggregation settings.

From Cisco VIM 2.4.2 onwards, support of M5 full on pods with two port XL-710 across control, compute and dedicated Ceph Nodes, and with
NIC_LEVEL_REDUNDANCY is available. This deployment can be achieved with Cisco Nexus 9000 series or Cisco NCS 5500 as ToR. SRIOV is not
supported in computes with XL-710. However, the pod can also support computes with four-port X-710, where SRIOV is over port C and D.

In Cisco VIM, computes (M4 based testbed) running a Cisco 1227 VIC, and 2 2-port Intel 520 NIC are supported. In this combination, SRIOV is running on
the Intel NIC, whereas the control and data plane are carried by virtual interfaces over Cisco VIC.

Cisco VIM 2.4 introduces the support of C220/C240 M5 servers in a micropod configuration with an option to augment the pod with additional computes
(up to a max of 16). The M5 micropod environment is based on X710 for control and data plane and an additional XL710 or 2xX710 for SRIOV. The
SRIOV card is optional. Once the SRIOV card is chosen, all the computes must have same number of SRIOV ports across the pod.

The following diagram depicts the server network card diagram for the UCS-M5 micropod setup.

UCS-M5 Intel NIC Design
—) ucs
Host

NIK 1

Current Irtel NIC design ‘ ' Tor
Dedicated ports for control 3ad data plane SRIOW
Willwork for OV and VP Conteol & Data Plane Intel X710 dx10G ENEN Ports
Total of 6158 ports needed, depending on Intel K710 41106 o
£ of ports for SRIQY ues P Inited XL710 2xd0G ‘Nlc
¥LTI0 suppert, but no NIC redundancy Control/data plane
: D : D — PET
410G
.\T:I. ::-::ﬂl’:ﬂ'apal'ef‘:-': Chanmel = il petl petl —— smw
RIC I- SRICH [onty T part ot XL 720 0 71O .
Links ta ToR
Foar SEICN, R Dirgd 1 paxrts i by | lops Z
Hihéreare 2 XT10, then by default te bomer okl NSCif far Data Plaest Vath pair
Conteol /Tty plrs s Virgd Control Pline
B Linux Brid
il losck at an optics foer ower-ricde ot 7 ge
r'/E.-orrlmIIEf.n'Cu'npmte —_— ! -\\, * Default gateway
' samipet
N e Tt
S 13 : Compute '2221
—
s atonage b lll' —nf
" Manugement
Lr
 ——

__ ems =4 A

Cisco VIM 2.4 introduces the first third-party compute. The first SKU chosen is HPE ProLiant DL360 Gen9. In Cisco VIM 2.4, the supported deployment is
a full-on pod, with OVS as the mechanism driver, where the management, control, and storage nodes are based on existing Cisco UCS ¢220/240M4 BOM,
and the compute nodes are on HPE ProLiant DL360 Gen9 hardware:

ProLiant DL360 Gen9 with HP Ethernet 1Gb 4-port 331i Adapter - NIC (755258-B21) 2 x E5-2695 v4 @ 2.10GHz CPU
8 x 32GB DDR4 memory (Total 256GB)

X Smart Array P440ar hardware RAID card with battery

x 1.2 TB - SAS 12GB/S 10k RPM HDD

x FlexLOM HP Ethernet 10Gb 2-port 560FLR-SFP+ Adapter

x PCIe HP Ethernet 10Gb 2-port 560SFP+ Adapter

System ROM: P89 v2.40 (02/17/2017)

iLO Firmware Version: 2.54 Jun 15 2017

N BN

For HP computes, the FlexLOM HP Ethernet 10Gb interface is used for management and tenant network, while the two additional HP Ethernet 10Gb 2-
port 560SFP+ adapters are used for SRIOV for the provider network. Listed below is network schematic of the HP Compute node (HP DL360GEND9).

@ ucs

[JHost

- Tor

Ports

B N c
Control/data plai

——— SRIOV
Links to ToR

— Veth pair
I Linux Bridge

samuxpetd | oy et [HTPEH * Default gateway

sa !Em

wiw? wriowd Prov icer
|t banded] L s

= -

ol sl
fnct bonded]

AP

=

.

Cisco VIM 3.4.6 uses Dell PowerEdge 740 (with 2x1.2TB HDD) as compute with UCS M5 as control and ceph nodes in a full pod environment. In this
configuration, four Intel XXV710 NIC cards are present in the compute with VPP/VLAN network. The cloud control and data plane are running on
dedicated NIC cards, while the SRIOV is running on two additional NICs as depicted below:

ConeljCompuse/siorage

T ues
[JHost
R v
ENEN Ports
I Nic

—— Control/data plane
—F PET

—_— SRICV
Links to ToR

The Cisco NFVI controller node has four bonds: mx, a, t, and e. Each of them has a underlying interface that is named with the network name association
and a mapped number. For example, the management and provisioning network, mx, maps to mx0 and mx1, the API network, a, to a0 and a1, and so on.
The bonds map directly to the vNICs that are automatically created on the controller node when it is deployed.

Cisco VIM manages a third-party infrastructure based on Quanta servers, thereby bringing in true software abstraction. In the implementation, the
supported deployment is a full-on or edge pod, with OVS as the mechanism driver. With the power limitation and rack restrictions on the edge pod, it
cannot support hard-drives for the Ceph service. As the Edge pod does not need persistent storage, it is designed to communicate with a central ceph
cluster for providing glance image services only.

The installation and management of the Central Ceph cluster is fully automated and it is assumed that the management network of the edge cloud is
routable to that of the central Ceph cluster.

In the case of Quanta servers, the networking is similar to that of the HP computes except for the two port 25G (xxv710) Intel NICs. The 2x25GE OCP card
is used for control and data plane network over virtio, and the two additional 25GE 2-port xxv710 based Intel NIC Adapters are used for SRIOV via the
provider network.

The following figure shows the controller node network-to-bond-to-vNIC interface mapping.

Ethnmet l:h.mnals e e

85 00 0000 BE
BB

The Cisco NFVI compute node has three bonds: mx, t, and p. Each has an underlying interface that is named with the network name association and a
mapped number. For example, the provider network, p, maps to p0 and p1. The bonds map directly to the vNICs that are automatically created on the
compute node when it is deployed. The following figure shows the compute node network-to-bond-to-vNIC interfaces mapping.

ToR-A ToR-&

Mexus K
Series Switches

Compute
Node

Ethernet Channels
Bond

The Cisco NFVI storage node has two bonds: mx and s. Each has an underlying interface that is named with the network name association and a mapped
number. For example, the storage network, s, maps to sO and s1. Storage nodes communicate with other storage nodes over the mx network. The storage
network is only used for Ceph backend traffic. The bonds map directly to the vNICs that are automatically created on the storage node when it is deployed.
The following figure shows the network-to-bond-to-vNIC interfaces mapping for Cisco NFVI storage node.

ToR-A ToR-B

Nexus 3000
Series Switches

VPC - Trunks
i
Storage
e VIC Ports J
Ethernet Channel
Bonds

Cisco NFVI installation creates two bridges on the controller nodes and interfaces and bonds are attached to the bridges. The br_api bridge connects the
API (a) interface to the HAProxy container. The HAProxy and Keepalive container has VIPs running for each OpenStack API endpoint. The br_mgmt
bridge connects the Management and Provisioning (mx) interface to the HAProxy container as well.

The following figure shows the connectivity between the mx interface and the br_mgmt bridge, and the connectivity between the br_mgmt and the
HAProxy container/namespace using mgmt_out and mgmt interfaces. The figure also shows the connectivity between the api interface and the br_api
bridge, and the link between the br_mgmt bridge and the HAProxy container using api_out and mgmt_out interfaces.

Series Switches

WP - Trunks

4

Cantroller
Node

Ethernet 'DmnneI; f——— —.______h___h_

Band =

api_out

api

A sample routing table is shown below. br_api is the default route and br_mgmt is local to the pod.

[root@c43-bot-mgmt ~]# ip route

default via 172.26.233.193 dev br_api proto static metric 425

172.26.233.0/25 dev br _mgmt proto kernel scope link src 172.26.233.104 metric 425
172.26.233.192/26 dev br api proto kernel scope link src 172.26.233.230 metric 425

[root@c43-bot-mgmt ~]# ip addr show br_api

6: br api: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue state UP
link/ether 58:ac:78:5c:91:e0 brd ff:ff:ff:ff:ff:£f

inet 172.26.233.230/26 brd 172.26.233.255 scope global br_ api

valid_1ft forever preferred_lft forever

inet6 fe80::2cla:f6ff:feb4:656a/64 scope link

valid 1lft forever preferred 1lft forever

[root@c43-bot-mgmt ~]# ip addr show br_ mgmt

7: br mgmt: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue state UP
link/ether 58:ac:78:5c:e4:95 brd ff:ff:.ff:ff:ff:£ff

inet 172.26.233.104/25 brd 172.26.233.127 scope global br mgmt

valid_1ft forever preferred_lft forever

inet6 fe80::403:14ff:fef4:10c5/64 scope link

valid 1lft forever preferred 1lft forever

Management Node Networking

Management Node Networking

In Cisco VIM, the management node has an interface for APl and another interface for provisioning. This is primarily done for security reasons, so that
internal pod management or control plane messages (RabbitMQ, Maria DB, and so on) does not leak out, and hence reducing the attack vector to the pod.
The APl interface is used to access the VIM installer APl and to SSH to the management node. All external services (installer API, Insight, ELK, and so on)
are password-protected and hang off the APl interface. The default route of the management node points to the APl interface. The other interface or the
provisioning interface is used to PXE boot the various nodes that constitute the OpenStack pod. Typically, the provisioning interface is a non-routable
interface that is reserved for OpenStack management traffic.

You must apply proper ACL in the upstream router, so that other networks do not interfere with the provisioning network. Depending on the overall
deployment, the management node acts as a jump-server to the OpenStack nodes.

The following figure depicts the Cisco VIM management node networking.

CIRAC LS
OO ratmork

arvi ioakable VIANE Eavrim u{nbr i roditalie VLY

br_api
{bonded]
Rzutable sl
ki for S50
S vica s hang off £

l Prwat Mutaal
hend Tir M anda=em & eanon

—— bonded
10G

1G
10/25*G (bonded)
*Mote: 25G for Quanta

Cisco NFVI UCS C-series management node physically connects to the network. Unlike other nodes, the management node does not use multiple vNICs
corresponding to specific Cisco NFVI networks. Instead, it connects to the management and API networks using two different physical connections. The
management node connects to the management network using a Cisco two-port VIC or first two ports of intel X710-DA4, with each port connecting to a
different ToR switch in a VPC configuration. The Cisco VIC card utilizes the default vNICs, but requires the vNICs to be in trunk mode and the default
VLAN set to the management network VLAN.

The management node connects to the API network using both 1Gbps LAN On Motherboard (LOM) ports connected in a port-channel configuration.
These ports can either connect to the Nexus 9000 series switch in a VPC configuration, or to an operator-managed switch, depending on how the operator
wants to segment their network. The Cisco IMC port can optionally be connected to an out-of-band management Catalyst switch.

Management node services, which are required to start the other topology nodes, listen to the management network and the traffic flowing over the vNICs
or NICs on that network. These services and the other management network services are unsecured. Secure management node services listen on the

management node API network, and their traffic flows over the LOM ports. This service division allows tenants to utilize tighter network access control to
the management network than the management node API network.

1 Connecting the Cisco IMC port to a Cisco OOB management switch is optional.

The following figure shows the Cisco NFVI management node (UCS C-series) API network connections.

ToR-A ToR-B
Nexus 9000
Series Switches

VPC - Trunks

Management
Node

00B Management
(Catalyst Switch)

For the Day 0 server automation in Cisco VIM, ensure that the reachability to:
® CIMC/ILO/BMC of the individual servers from the management node is available through the br_api network.

® Cloud API, external network (for ssh to floating IPs), and provider network from the management node is available, as the VMTP and NFVbench
are typically run from the management node.

1" You can enable or disable the default behavior of the management node reachability from cloud API, external network, and provider network as
part of their Day 0 configuration.
If you disable the reachability to cloud API, external, and provider network for security reasons, then:

® VMTP and NFVbench are not accessible from the management node.
® Cloud API, external network, and provider network must be properly routed as the Cisco VIM cannot automatically valid the same.

IPv6 Support

IPv6 Support on Management Network

As the number of available routable IPv4 networks is limited, Cisco VIM supports dual-stack environment. In a dual-stack environment, Cisco VIM honors
all the external endpoints over IPv6, including OpenStack. The switching from IPv4 to IPv6 based environment needs a reinstallation of the entire pod. The
internal networks similar to management/provision use a non-routable private IPv4 network to PXE boot the servers in a Layer 2 environment.

1" Ifthe management node is Layer 3 adjacent to the pod made of UCS servers, the IPv4 address of the management network in the dual-stack
environment is routable.

Enhancements are made so that the IPv4 address of the management network in the dual-stack environment is non-routable, when the pod is made up of
Quanta servers.

As both CEPH (mon) and OpenStack control plane communication over IPv4 exists, you cannot completely remove IPv4 from the management network.
However, you can run IPv4+IPv6 dual-stack in which IPv4 network can exist in a non-routable private network and IPv6 network can exist in a routable
semi-private network. This satisfies the requirements of the Cisco VIM accessibility to the external services over IPv6.

In Cisco VIM, the management network supports IPv6 addresses for servers, while the management node is statically allocated from a given pool. The
external services that support both IPv4 and IPv6 addresses are DNS, NTP, and AD or LDAP. You can run IPv4+IPv6 (optionally) as the cloud API
endpoint. CIMC/BMC can have IPv6 addresses.

UCS C-Series
UCS C-Series

You can deploy Cisco NFVI using a combination of Cisco UCS C-series and or selected third-party rack servers. The C-series management node is
connected to the Cisco Nexus 9000 Series ToRs through the Cisco VIC in a VPC configuration. The servers are connected to the ToRs as well. For C-
series implementation, see Networking Overview.

For C-series pods, each host has a 2x10-GE Cisco network card 1227 from which the installer creates two vNICs for each network to ensure that the
network topology has built-in redundancy. You can also use the same network card for provider network, if needed. Each link of a given network type
terminates to a unique Cisco Nexus 9000 switch, which acts as a ToR. The Cisco Nexus 9000s are configured in VPC mode to ensure network
redundancy. The networking redundancy is extended to the management node, which has a redundant vNIC for the installer APl and management or
provisioning networks. The following figure shows the C-series topology.

— ¥ (n) UGS C220-M4 St Shoda
(3) UC-220M4 oruCs260-Ma (3 UCSC200-M4

or UCS-240-M& NovaCompute Ceph Storage
05 Controlier

1 Here, UCS 220 M4 is used as the control/compute, but UCS 240 M4 can also be used as control and compute nodes.

Cisco NFVI uses multiple networks and VLANS to isolate network segments. For UCS C-series management and storage nodes, VLANSs are trunked
between the ToR switches and Cisco VICs on the C-series nodes. The following figure shows the network segment layout for combined C-series
Chondl Fubde AR

. 0 C

oo 5 B | L LL - B . \ i . ‘ \

O T T S A AN A AN
)) I))))

JF‘-\
A G G S S S

=
Cloud Public API = Used to access AP endpoints — HAProxy front-ends the APIs - Publically Routable Space (needs wery small prefix)
External — Per-tenant Neutron Routers attach ‘public’ interface to this segment - Publically Routable Space
Mgmit = Used for API-to-AP1 traffic, S5H access to nodes and prov Bioning segment = RFC191B space

source VXLAN VTEPs from this network) — RFC1918 space

Insnallas AF1

.

Tenant — Used for VALAN transit traffic [ControllerfCompute nodes

ants to ¢ th t hed seg i Publically Routable or RF

Storage — Used by Ceph for storage-only traffic [Le. rephcation) - RFC191E space
Installer APl - Used to acoess seénvices (ELK, LCSD, Installer APl etc) on Bulld node
For B series, UCSM IP should be reachable from the management network

High Availability
High Availability

High availability (HA) is provided by HAProxy, a single-threaded, event-driven, non-blocking engine combining a fast I/O layer with a priority-based
scheduler. HAProxy architecture is layered with bypass mechanisms at each level to ensure that the data does not reach higher levels than needed. Most
processing is performed in the kernel.

The following figure shows a detailed view of Cisco NFVI controllers connecting to the APl and Management and Provisioning network. It also shows how
the bridges are configured and the roles of the HAProxy container and network namespace. The dedicated HAProxy container network namespace was
created to avoid split default gateway problems. The namespace allows API segment ingress and egress traffic to have a different default gateway than
the one configured on each controller host for non-API traffic. In the illustration, two of the three Cisco NFVI controllers have HAProxy containers and a
dedicated Linux network namespace. Cisco NFVI supports three HAProxy containers.

AP Metwark
HA Proxy [Standby] HA Proxy [Standby] Pl Call #
call #2
Management
Metwork
Galera (Standby) Galera (Standby)
Keyslone Keystone
Homzon Honzon
Mova MNova
Meutron Server Meutron Server
Others... Others...
Control Mode 3 Control Node 2 Control Node 1

In the figure, Control Node 1 is attached to the API network segment through the br_api bridge. The br_api bridge connects to the Linux network
namespace where the HAProxy container has an interface that is mapped through the api < > api_out interface mapping. The HAProxy container has a
default gateway configured that points to the upstream API Layer 3 First Hop Redundancy Protocol (FHRP) VIP. This gateway is used for the HAProxy
container incoming and outgoing API traffic.

Outside traffic coming in through the API interface is routed into the API network. The traffic traverses the br_api bridge, goes into the Linux network
namespace and then the API VIP (based on the IP address or port) that is listening on the HAProxy container. The HAProxy container establishes a
connection with the backend API endpoint (for example, the OpenStack Horizon dashboard) and the return traffic passes through the container and back
out the API network following the default gateway for the container on the API network. All other non-API traffic such as the management access over SSH
to the Cisco VIM controller comes into the management or provisioning network and access the node directly. Return traffic uses the host-level default
gateway that is configured on the Linux (RHEL) operating system.

If an HA event occurs in a Cisco NFVI pod, Cisco VIM automatically shuts down machines by failing over services. Examples include:

® For API servers, HAProxy automatically ensures that the other redundant control services handle requests, avoiding the shutdown/terminated/non-
responding one.

® For quorum services, such as Galera, the remaining members of the quorum continue to provide service and HAProxy ensures that new requests
go to the remaining processes.

® For an active/standby process such as HAProxy, the system moves the endpoint IP to a standby copy and continues to operate.

All these behaviors are automatic and do not require manual intervention. When the server is restarted, the services automatically come into service and
are added to the load balancing pool, joining their quorums or are added as backup services, depending on the service type.

While manual intervention is not needed, some specific failure scenarios (for example, Mariadb, rabbit) can cause problems that require manual
intervention. For example, if a complete network failure occurs, the Galera and RabbitMQ clusters can go into three-way partition. While the Cisco NFVI
cluster is resilient to single-point failures, two switches failing simultaneously—something highly unlikely in long-running systems—can sometimes happen
due to administrative error, in which case, manual intervention is needed.

To repair the pod, the management node must be up and running and all the nodes accessible through password-less SSH from the management node.
From the installer<tagid> directory, execute:

ciscovim cluster-recovery

The control nodes are recovered after the network partitions are resolved. After executing this command, control nodes services come back to working
state. To ensure that the Nova services are good across the compute nodes, execute the following command after sourcing /root/openstack-configs/openrc:

nova service-list*

To check for the overall cloud status, execute the following:

ciscovim
cloud-sanity create test all

To view the cloud-sanity results, use the following command:

#ciscovim cloud-sanity show result all -id
<uid of the test >

Storage Node Overview
Storage Node Overview

® Block Storage

® ObjectStore

® Third-Party Integration
®* NetApp
® SolidFire
® Zadara

Block Storage

Cisco NFVI storage nodes utilize Ceph, an open source software for creating redundant, scalable data storage using clusters of standardized servers to
store petabytes of accessible data. OpenStack Object Storage is a long-term storage system for large amounts of static data that can be retrieved,
leveraged, and updated. It uses a distributed architecture with no central point of control, providing greater scalability, redundancy, and permanence.
Objects are written to multiple hardware devices, with the OpenStack software responsible for ensuring data replication and integrity across the cluster.
Storage clusters scale horizontally by adding new nodes. if a node fail, OpenStack replicates its content across other active storage nodes. Because Ceph
uses software logic to ensure data replication and distribution across different devices, inexpensive commodity hard drives and servers can be used in lieu
of more expensive equipment.

Cisco NFVI storage nodes include object storage devices (OSDs): consisting either of hard disk drives (HDDs), and/or solid state drives (SSDs). OSDs
organize data into containers called objects that a user or application determines are related. The objects reside in a flat address space where they all
exist at the same level and cannot be placed inside one another. Each OSD has a unique object identifier (OID) that allows the Cisco NFVI control node to
retrieve it without knowing the physical location of the data it contains.

HDDs store and retrieve digital information using one or more rigid rapidly rotating disks coated with magnetic material. The disks are paired with magnetic
heads arranged on a moving actuator arm, which read and write data to the disk surfaces. Data is accessed in a random-access manner; individual data
blocks can be stored or retrieved in any order and not only sequentially. HDDs are a type of non-volatile memory, retaining stored data even when
powered off.

SSDs are solid-state storage devices that use integrated circuit assemblies as memory to store data persistently. SSDs primarily use electronic interfaces
compatible with traditional block input/output (I/O) hard disk drives, which permit simple replacements in common applications.

Cisco NFVI storage nodes are managed by the control node applications including Ceph monitoring dashboard, Glance, and Cinder. The Ceph monitoring
dashboard provides a view into the overall storage node health. Glance virtualizes pools of block storage devices and provides a self-storage API to
request and consume those resources. Cinder is an OpenStack block storage service designed to present storage resources to the OpenStack compute
node.

In Cisco VIM, depending on the needs of the user, the number of OSDs a pod can have is between 3 and 20. From release Cisco VIM 3.0.0 onwards, you
can choose to have multi-backend Ceph in the same pod, to support different /0O requirements. Currently, this is a Day 0 decision. You must decide

whether to start with single or multi back-end ceph, with a minimum of three nodes for each backend type. Only 2 backends (one of type HDD and another
of type SSD) for each pod is supported. For details on how to use HDD or SSD based ceph, see Ceph Storage

ObjectStore

Cisco VIM provides an integration with the reference object storage solution of swift. In this case, the SolidFire deployment is a prerequisite where
the iSCSI cluster is setup and its storage VIP (svip) is accessible from controller nodes (iSCSI TCP port 3260). Also, the volumes are pre-created and the
authentication for volume access is captured. For more details, see Swift Integration.

Third-Party Integration

NetApp

Cisco VIM supports NetApp devices running ONTAP 9.X or higher. NetApp devices are alternative to Ceph for block storage. Cisco VIM is integrated and
tested with FAS2650 SKU of NetApp as a Day 0 option. For more details, see NetApp Integration. The NetApp cluster is pre-deployed and its management
is outside the scope of Cisco VIM.

SolidFire

In Cisco VIM, you can choose SolidFire as an option for block storage along with Ceph. In this scenario, the backend for Glance is Ceph. The Cinder block
storage service manages the creation, attachment, and detachment of these volumes between a storage system, such as SolidFire and different host
servers. The SolidFire cluster is pre-deployed with two networks: management and storage. It is recommended that:

® The storage network for Cisco VIM is same as that for SolidFire.
®* The management network for SolidFire is reachable from Cisco VIM control nodes.

For details on enabling SolidFire, see Enabling SolidFire

Zadara

The Zadara Virtual Private Storage Array (VPSA) is a software-defined solution, that is available as a Storage-as-a-Service with the storage servers
residing in the customer premise. It is an elastic system that provides Enterprise-grade data protection and data management storage services. Cisco VIM
provides Day 0 seamless integration with Zadara (pre-deployed ahead of time), and hence enables the following value-added services associated with it:

Enterprise quality, resilient, highly available, and consistent performance storage for the most demanding data center application workloads.
Consumed as a service - flexible, dynamic and billable.

Scale out - to hundreds of storage nodes, thousands of drives, and multi-petabyte storage.

True multi-tenancy - End-user controlled privacy and security. Separate workloads, resource allocation, and management per tenant such that
each tenant truly experiences secure storage with no noisy neighbor.

® Universal storage - Supports all data services on one common infrastructure: Block, File, Object.

For details on enabling Zadara, see Enabling Zadara

OpenStack Telemetry Service
OpenStack Telemetry Service

Overview

OpenStack Compute

OpenStack Image

OpenStack Block Storage

Metrics Polling and Retention Policy

Overview

Cisco VIM provides telemetry services to collect meters within an OpenStack deployment. Cisco VIM Telemetry service is built on Ceilometer and Gnocchi
in OpenStack Trains release. You can retrieve metrics using OpenStack CLI and REST APIs. Pods must have Ceph for persistent storage of the metrics
which are collected every five minutes and retained for 48 hours. As Ceph is required for ceilometer, you can install ceilometer as part of fresh installation
of the cloud, that is, ceilometer cannot be brought in as a reconfigure option. Also, the ceilometer is supported only on fullon pod.

The following figure illustrates the high-level architecture of the telemetry services.

OpenStack Sanvices

[HNalification Bus]
If ceilometer is enabled in setup_data.yaml file, the Telemetry service in Cisco VIM collects the metrics within the OpenStack deployment.

® Once ceilometer is added as Day 0 configuration on a fullon pod, you can only deploy the pod but cannot be uninstalled.

® If ceilometer is deployed and metrics are generated, CEPH status indicates HEALTH_WARN. This is normal as ceilometer metric pool
have too many objects per placement group than average value. However, this specific warning does not block any pod management
operation.

The following sections provide a summary of the metrics that are collected with the Cisco VIM using ceilometer/gnocchi OpenStack REST API.

OpenStack Compute

The following metrics are collected for OpenStack Compute:

Name Type Unit Resource Origin Note

memory Gauge MB instance ID Notification = Volume of RAM allocated to the instance

memory.usage Gauge MB instance ID Pollster Volume of RAM used by the instance from the amount of its allocated memory

cpu Cumulative ' ns instance ID Polister CPU time used

cpu.delta Delta ns instance ID Polister CPU time used since previous datapoint

cpu_util Gauge % instance ID Pollster Average CPU utilization

vepus Gauge vepu instance ID Notification | Number of virtual CPUs allocated to the instance
disk.read.requests Cumulative ' request instance ID Pollster Number of read requests

disk.read.requests.rate Gauge request/s ' instance ID Pollster Average rate of read requests

disk.write.requests Cumulative ' request instance ID Pollster Number of write requests

disk.write.requests.rate Gauge request/s ' instance ID Pollster Average rate of write requests

disk.read.bytes Cumulative ' B instance ID Pollster Volume of reads

disk.read.bytes.rate Gauge B/s instance ID Pollster Average rate of reads

disk.write.bytes Cumulative | B instance ID Pollster Volume of writes

disk.write.bytes.rate Gauge B/s instance ID Polister Average rate of writes

disk.device.read.requests Cumulative ' request | disk ID Pollster Number of read requests

disk.device.read.requests.rate = Gauge request/s | disk ID Pollster Average rate of read requests
disk.device.write.requests Cumulative ' request | disk ID Pollster Number of write requests
disk.device.write.requests.rate = Gauge request/s | disk ID Pollster Average rate of write requests

disk.device.read.bytes Cumulative ' B disk ID Pollster Volume of reads

disk.device.read.bytes .rate Gauge B/s disk ID Pollster Average rate of reads

disk.device.write.bytes Cumulative ' B disk ID Pollster Volume of writes

disk.device.write.bytes.rate Gauge B/s disk ID Pollster Average rate of writes

disk.root.size Gauge GB instance ID Notification | Size of root disk

disk.ephemeral.size Gauge GB instance ID Notification ' Size of ephemeral disk

disk.capacity Gauge B instance ID Pollster The amount of disk that the instance can see
disk.allocation Gauge B instance ID Pollster The amount of disk occupied by the instance on the host machine
disk.usage Gauge B instance ID Pollster The physical size in bytes of the image container on the host
disk.device.capacity Gauge B disk ID Pollster The amount of disk per device that the instance can see
disk.device.allocation Gauge B disk ID Pollster The amount of disk per device occupied by the instance on the host machine
disk.device.usage Gauge B disk ID Pollster The physical size in bytes of the image container on the host per device
network.incoming.bytes Cumulative ' B interface ID Pollster Number of incoming bytes

network.incoming.bytes.rate Gauge B/s interface ID | Pollster Average rate of incoming bytes

network.outgoing.bytes Cumulative ' B interface ID Pollster Number of outgoing bytes

network.outgoing.bytes.rate Gauge B/s interface 1D Pollster Average rate of outgoing bytes
network.incoming.packets Cumulative ' packet interface ID Polister Number of incoming packets
network.incoming.packets.rate = Gauge packet/s | interface ID Pollster Average rate of incoming packets
network.outgoing.packets Cumulative | packet interface ID Pollster Number of outgoing packets
network.outgoing.packets.rate = Gauge packet/s interface ID Pollster Average rate of outgoing packets
network.incoming.packets.drop | Cumulative | packet interface ID Pollster Number of incoming dropped packets
network.outgoing.packets.drop = Cumulative = packet interface ID Pollster Number of outgoing dropped packets
network.incoming.packets.error ' Cumulative = packet interface ID Pollster Number of incoming error packets
network.outgoing.packets.error | Cumulative = packet interface ID Pollster Number of outgoing error packets

memory.swap.in Cumulative = MB interface ID Pollster Memory swap in

memory.swap.out Cumulative = MB interface ID Pollster Memory swap out

disk.device.read.latency Cumulative | ns Disk ID Pollster Total time read operations have taken

OpenStack Image

The following metrics are collected for OpenStack Image service:

Name Type Unit Resource Origin Note

image.size Gauge B image ID Notification, Pollster = Size of the uploaded image
image.download ' Delta B image ID Notification Image is downloaded
image.serve Delta B image ID Notification Image is served out

OpenStack Block Storage

The following metrics are collected for OpenStack Block Storage:

Name Type Unit Resource Origin Note

volume.size Gauge @ GB Voulume ID Notification | Size of the volume

Metrics Polling and Retention Policy

Cisco VIM telemetry service polls metrics every 5 minutes and retains the metrics for 48 hours.

For more details, see Heat and Ceilometer

NFVBench
NFVBench

® Setting up NFVbench
® Encapsulation
® Cisco VIM CLI

Setting up NFVbench
Setting up and Using NFVbench

Overview

Pre-requisites

Built-in packet paths

NFVBench Command-Line Options and Status

Using NFVbench Configuration File

Control Plane Verification

Testing
L]

Fixed Rate Test
® No Drop Rate (NDR)/Partial Drop Rate (PDR) Test
® Multi-chain Test
® Multi-flow Test
® External Chain Test
® NFVbench Results
® Examples of NFVbench Result Execution
® VXLAN Fixed Rate

Overview

NFVbench is a built-in network benchmarking tool that provides a consistent methodology to measure the network performance of the cloud without the
need to install and use dedicated traffic generators.

You can use the NFVbench to:
® Verify whether the deployed data plane is working properly and efficiently when using well-defined packet paths that are typical of NFV service
chains.
® Measure the actual performance of the deployed infrastructure data plane, so that you can estimate the amount of traffic that can be sent and
received by one or more VNFs.

The following figure illustrates a typical benchmark run with NFVbench:

CISCU UIM pﬂ_d Control Node
Control Node
Control Node
TOR Storage
Cisco VIM Management Node ' e [—— e —— \ Storage
i A Intel / AR2S8I508 I Storage
T oo e i
th B e S SRR O] s \ | Compute node 1
| I r } |
e 1 [I (R S— 1
NFVbench | ey + switch |
\ / | | or) 4loopback
; L
— = = — — | SBlQu & yMs
| [
! 1
Compute node N

NFVbench runs on the management node inside a container along with the TRex open source software traffic generator. The traffic generator uses a
dedicated Intel NIC to send and receive traffic to the ToRs.

A typical benchmark run with NFVbench:

® Loads a test loopback VM image into Openstack using the glance API. This is done only for the first time execution of NFVbench on the pod.

® Requests Openstack to create two virtual networks, two virtual interfaces, and a VM with that loopback image using the Neutron and Nova APlIs.

® Programs the traffic generator to generate UDP packets with the right L3 and L2 headers to follow the packet path outlined by the dashed blue
line, once the VM is up and running in a compute node.

® Starts the traffic generation.

® Stops the traffic generation, collects the results, and presents them in a user-friendly format, at the end of the benchmark.

The traffic flows through a ToR switch to virtual switch on compute node, continues to VM representing any basic VNF in NFV deployment, and comes
back in a similar way on different ports. You can compute the network performance or throughput, based on the sent and received traffic.

NFVbench supports the following Cisco VIM data plane network options:

OVS with VLAN

VPP virtual switch with VLAN

VPP virtual switch with VXLAN overlay
SRIOV

Pre-requisites
® For NFVbench running on the management node, the software traffic generator needs an extra Intel NIC X710 (2x10Gbps), XXV710 (2x25Gbps),

or XL710 (2x40Gbps) with two ports connected to the ToRs.
® The NFVBENCH option must be enabled in the Cisco VIM configuration file using the following command:

NFVBENCH :
enabled: true
tor info: {sjc04-tora-podé6: ethl/22, sjc04-torb-podé: ethl/22}

® The tor_info option must specify the interface names on the ToRs where the two Intel NIC ports reserved for NFVbench are connected.
® NFVbench can be enabled post deployment using a reconfigure operation.

Built-in packet paths
NFVbench can setup and stage one or more service chains each containing one or two VNFs .
Single VNF Chain

The default packet path is Physical - VM - Physical (PVP) and represents a typical service chain made of one VNF/VM:

single VNF chain (PVP) NIC Compute node
| DC-SW I |‘ vawitch ‘I
traffic | I — | [) E
genarator | I | |

The traffic generator runs within the NFVbench container on the management node. DC-SW represents the top of rack (ToR) switches. The VNF is a test
VM that contains a fast L2 forwarder that can emulate a very fast VNF.

The traffic generator generates bi-directional traffic with the UDP packets generated on the two physical interfaces. The switch forwards the packets to the
appropriate compute node before arriving to the virtual switch, and then to the VNF before looping back to the traffic generator on the other interface.

In the case of SRIOV, the packets bypass the virtual switch and go directly between the compute node NIC and the test VM.

The performance of the PVP packet path provides a very good indication of the capabilities and efficiency of the NFVI data plane in the case of a single
service chain made of one VNF/VM.

Two-VNF Chain
NFVbench also supports more complex service chains made of two VMs in sequence and called Physical-VM-VM-Physical (PVVP).

In a PVVP packet path, the two VMs reside on the same compute node.

The following figure illustrates packet path having two-VM chain.

2-VNF chain (PVVP) NIC Compute node e
a
—
traffi | | :
- | DCSW | | | vswitch | |
generator I | : |
— 4
VNF1b

NFVBench Command-Line Options and Status

You can execute most of the benchmark variants using CLI options from the shell prompt on the management node. The NFVbench command-line options
are displayed using the --help option:

[root@mgmtl ~]# nfvbench --help

Use the --status option to check the NFVbench version and see if benchmark is running:

[rootemgmtl ~]# nfvbench -status

2018-12-19 20:29:49,656 INFO Version: 3.X.X

2018-12-19 20:29:49,656 INFO Status: idle

2018-12-19 20:29:49,704 INFO Discovering instances nfvbench-loop-vm. ..
2018-12-19 20:29:50,645 INFO Discovering flavor nfvbench.medium...
2018-12-19 20:29:50,686 INFO Discovering networks...

2018-12-19 20:29:50,828 INFO No matching NFVbench resources found

Using NFVbench Configuration File
More advanced use-cases require passing a yaml NFVbench configuration file. You can get the complete default NFVbench configuration file by using the -

show-default-config option (the output of which can be redirected to a file). Navigate to the host folder mapped to the NFVbench container (/root/nfvbench)
and copy the default NFVbench configuration by using the following command:

[root@mgmtl ~]# cd /root/nfvbench
[root@emgmtl ~]# nfvbench --show-default-config > nfvbench.cfg

Edit the configuration file to remove all the properties that are not changed and retain the properties that are required. For example, if the default timeout
for launching the test VM is too short, you can keep the following lines in the configuration file and increase the number of retries from 100 to 200:

General retry count
generic_retry_count:200

All other lines in the default configuration file can be removed. The NFVbench always loads the original default configuration file first before overwriting the
properties that are specified in the passed configuration file.

When ready, the edited configuration file is passed to NFVbench using the -c option. Ensure that you use the container visible pathname, as this file is
read from the container. The /root/nfvbench folder on the host is mapped to the /tmp/nfvbench folder in the container, so the configuration file stored under /
root/nfvbench/<file> must be referenced as /tmp/nfvbench/<file> in the CLI option.

For example:

[rootemgmtl ~]# nfvbench -c¢ /tmp/nfvbench/nfvbench.cfg

@ You can use additional command line options with the -c option.

Control Plane Verification

If you are trying NFVbench for the first time, verify that the tool can stage the default packet path properly without sending any traffic. The --no-traffic option
exercises the control plane by creating a single test service chain with one VM, but does not send any traffic.

The following command stages only the default PVP packet path, but does not generate any traffic:

[root@mgmtl ~]# nfvbench --no-traffic

Testing
Reports from NFVbench show the data measurements from every hop in the path, to detect the configuration errors or potential bottlenecks.
Advanced testing using NFVbench allows to conduct multi-chain and multi-flow testing. Multi-chain testing enables running multiple parallel independent

packet paths at the same time, while the multi-flow testing performs IP ranging in packet headers within every chain. The below figure illustrates a
NFVbench result test execution with two parallel chains with one VM each.

N single VNF choins vswitch
(N x PVYP, N=2)
YNF1
traffic |* 9
generator ‘1]
| DC-SW | i .
NIC Compute node

Fixed Rate Test

NFVbench offers a simple test to run traffic at a fixed rate, to verify whether each network component of packet path is working properly. It is useful for
identifying bottlenecks in the test environment.

Traffic generator generates packets at a fixed rate for a specified duration. For example, you can generate a total of 10000 packets per second (which is
5000 packets per second per direction) for the default duration (60 seconds), with the default frame size of 64 bytes using the following configuration:

[root@emgmtl ~]# nfvbench

You can specify any list of frame sizes using the -frame-size option (pass as many as desired), including IMIX.

Following is an example to run a fixed rate with IMIX and 1518 byte frames:

[root@mgmtl ~]# nfvbench --rate 10kpps --frame-size IMIX --frame-size 1518

No Drop Rate (NDR)/Partial Drop Rate (PDR) Test

NDR/PDR test is used to determine the performance of the data plane in terms of throughput at a given drop rate using any of the standard defined packet
sizes - 64B, IMIX,1518B. The NDR value represents highest throughput achieved when no packets are dropped. It allows packet drop rate of less than
0.001%. PDR represents the highest throughput achieved when only small number of packets is dropped. The packet dropped is less than 0.1% of
packets sent.

NDR is always less or equal to PDR.

To calculate the NDR and PDR for your pod, run the following command:

[rootemgmtl ~]# nfvbench --rate ndr_pdr

From the collected statistics, drop rates and latencies are computed and displayed.

Both the NDR/PDR test and fixed rate test provide a way of verifying network performance of NFV solution.

Multi-chain Test

In multi-chain test, each chain represents an independent packet path symbolizing real VNF chain. You can run multiple concurrent chains and simulate
network conditions in real production environment. Results with single chain versus with multiple chains usually vary because of services competing for
resources (RAM, CPU, and network).

To stage and measure multiple service chains at the same time, use --service-chain-count flag or shorter -scc version.

The following example shows how to run the fixed-rate run test with ten PVP chains:

[root@mgmtl ~]# nfvbench -scc 10 --rate 100kpps

The following example shows how to run the NDR/PDR test with ten PVP chains:

[root@emgmtl ~]# nfvbench -scc 10 --rate ndr_ pdr

Multi-flow Test
In a multi-flow test, one flow is defined by a source and destination MAC/IP/port tuple in the generated packets. It is possible to have many flows per chain.

The maximum number of flows that are supported is in the order of 1 million flows per direction. The following command runs three chains with a total of
100K flows per direction (for all chains):

[root@mgmtl ~]# nfvbench -scc 3 -fc 100k

External Chain Test

NFVbench measures the performance of chains that are pre-staged (using any means external to NFVbench). These chains can be real VNFs with L3
routing capabilities or L2 forwarding chains.

The external chain test is used when you want to use NFVbench only for traffic generation. In this case, NFVbench sends traffic from the traffic generator
and reports results without performing any Openstack staging or configuration.

Ensure that the setup is staged externally prior to running NFVbench by creating networks and VMs with a configuration that allows generated traffic to
pass. You need to provide the name of the two edge Neutron networks to which the traffic generators are to be attached, during configuration, so that
NFVbench can discover the associated segmentation ID (VLAN or VNI).

If the external chains support only L2 forwarding, the NFVbench configuration must specify the destination MAC to be used in each direction for each chain.

If the external chains support IPv4 routing, the NFVbench configuration must specify the public IP addresses of the service chain end points (gateway IP)
that are used to discover destination MAC using ARP.

To measure performance for external chains, use the --service-chain EXT (or -sc EXT) option:

[root@emgmtl ~]# nfvbench -sc EXT

NFVbench Results

You can store the detailed NFVbench results in JSON format using the below command, if you pass the --json option with a destination file name or the --
std-json option with a destination folder pathname to use the standard file name generated by NFVbench.

[rootemgmtl ~]# nfvbench -scc 3 -fc 10 -fs 64 --json /tmp/nfvbench/my.Jjson

The above command stores the results in JSON file in /tmp/nfvbench container directory. This file will be visible at the host level under the ~/nfvbench
directory as ~/nfvbench/my.json.

Examples of NFVbench Result Execution

VLAN Fixed Rate

The following example shows the generation of the default frame size (64B) over 100Kpps for the default duration (60s) with the default chain type (PVP),
default chain count (1) and default flow count (10k):

nfvbench -rate 100kpps -fs IMIX

The summary of NFVbench result is shown below:

Date: 2018-12-19 21:26:26
NFVBench version 3.0.4.dev2
Openstack Neutron:
vSwitch: VPP
Encapsulation: VLAN
Benchmarks:

> Networks:

> Components:

> Traffic Generator:
Profile: trex-local
Tool: TRex

> Versions:

> Traffic_Generator:
build date: Nov 13 2017
version: v2.32

built by: hhaim

mode: STL

build time: 10:58:17
VPP: 18.07

CiscoVIM: 2.4.3-15536
Service chain:

PVP:

Traffic:

vV V. V VvV Vv

Profile: custom traffic profile
Bidirectional: True

Flow count: 10000

Service chains count: 1

Compute nodes: [u'nova:c45-compute-2"']

The following NFVbench result execution summary table provides the drop rate measured (in this example no drops) and latency measurements in micro-
seconds (time for a packet to be sent on one port and receive back on the other port).

L2 Frame Size Drop Rate Avg Latency (usec) Min Latency (usec) Max Latency (usec)

IMIX 0.0000% 28 20 330

The following NFVbench result configuration table provides the mode details for both forward and reverse directions, where:

1. Requested TX Rate is the rate that is requested in bps and pps.
2. Actual TX Rate is the actual rate achieved by the traffic generator. It can be lower than the requested rate if there is not enough CPU.
3. RX Rate is the rate of packets received.

Direction Requested TX Rate Actual TX Rate RX Rate Requested TX Rate Actual TX Rate RX Rate
(bps) (bps) (bps) (pps) (pps) (pps)

Forward 152.7333 152.7334 152.7344 50,000 pps 50,000 pps 50,000 pps
Mbps Mbps Mbps

Reverse 152.7333 152.7334 152.7344 50,000 pps 50,000 pps 50,000 pps
Mbps Mbps Mbps

Total 305.4667 305.4668 305.4688 100,000 pps 100,000 pps 100,000 pps
Mbps Mbps Mbps

The forward and reverse chain packet counters and latency table shows the number of packets sent or received at different hops in the packet path, where:
®* TRex.TX.p0 or p1 shows the number of packets sent from each port by the traffic generator.
® Vpp.RX.vlan.<id> shows the number of packets received on the VLAN sub-interface with VLAN id <id> in the VPP vswitch.
® Vpp.TX.veth/<id> shows the number of packets sent to the VM.
® Vpp.RX.veth/<id> shows the number of packets received from the VM.

The following table shows the forward chain packet counters and latency:

Chain TRex.TX. vpp.RX.vlan. vpp.TX.veth vpp.RX.veth vpp.TX.vlan. TRex.RX. Avg Min Max
p0 1547* 12 n* 1511 p1* Latency Latency Latency
0 3,000,001 => => => => 3,000,001 28 usec 20 usec 320 usec

The following table shows the reverse chain packet counters and latency:

Chain TRex.TX. vpp.RX.vlan. vpp.TX.veth vpp.RX.veth vpp.TX.vlan. TRex.RX. Avg Min Max
p1 1511* " 12* 1547 po* Latency Latency Latency
0 3,000,001 => => => => 3,000,001 28 usec 20 usec 330 usec

‘=>’ indicates that no packets are dropped. Otherwise, the value will indicate the number of packets dropped.

VLAN NDR/PDR

Use the following command to measure NDR and PDR for IMIX, with the default chain type (PVP), default chain count (1) and default flow count (10k):

nfvbench -fs IMIX

The summary of the NFVbench result execution is shown below:

Date:

2018-12-20 23:11:01

NFVBench version 3.0.5.dev2
Openstack Neutron:

vSwitch: VPP

Encapsulation: VLAN
Benchmarks:

> Networks:

The NFVBench result execution summary table shows the following:

The foll

NDR
PDR

> Components:
> Traffic Generator:
Profile: trex-local
Tool: TRex
> Versions:
> Traffic_Generator:
build date: Nov 13 2017
version: v2.32
built_by: hhaim
mode: STL
build_time: 10:58:17
> VPP: 18.07
> CiscoVIM: 2.3.46-17358
> Measurement Parameters:
NDR: 0.001
PDR: 0.1
> Service chain:
> PVP:
> Traffic:

Profile: custom traffic_ profile

Bidirectional:
Flow count:

10000

Service chains count: 1

Compute nodes:

L2 frame size

[u'nova:a22-mchester-micro-3"']

Highest throughput achieved in bps and pps below the drop rate thresholds being the sum of TX for both ports.

Drop rate measured
Latency measured (average, min, max)

lowing table shows NFVBench result execution summary

L2 Frame Size Rate (fwd+rev) in Gbps

IMIX 8.5352 2,794,136

IMIX 9.5703 3,133,012

Rate (fwd+rev) in pps

VXLAN Fixed Rate

It is applicable for platforms that support VxXLAN only.

Example 1:

Avg Drop Rate Avg Latency (usec) Min Latency (usec)

0.0000% 124 10
0.0680% 167 10

Max Latency (usec)

245
259

In this example, the default frame size of 64B is sent over 1Mpps on two chains using VxLAN with flow count of 10k:

nfvbench --duration 10 -scc 2

The summary of the NFVBench result is shown below:

2018-12-20 23:28:
2018-12-20 23:28:
2018-12-20 23:28:
2018-12-20 23:28:
2018-12-20 23:28:

24,715
24,716
24,716
24,716
24,716

INFO

--rate 1Mpps

--duration 10

--rate 1Mpps --vxlan
INFO VxLAN: vlan tagging forced to False
INFO Using default VxLAN segmentation_id 5034 for middle internal network
INFO Using default VXLAN segmentation id 5017 for right internal network
INFO Using default VXLAN segmentation id 5000 for left internal network

(inner VLAN tagging must be disabled)

Example 2:

In this example, VXLAN benchmark is run and 64B frames are sent over 100kpps for the default duration.

nfvbench
2018-12-18 19
2018-12-18 19
2018-12-18 19
2018-12-18 19

: 25
:25
: 25
: 25

-rate 100kpps
:31,056
:31,056
:31,056
:31,056

--vxlan
INFO VxLAN: vlan_ tagging forced to False
INFO Using default VXLAN segmentation id
INFO Using default VXLAN segmentation id
INFO Using default VxXLAN segmentation_id

The NFVBench result summary is as follows:

Date:

2018-12-18 19:26:40

NFVBench version 3.0.5.dev2

Openstack Neutron:

vSwitch: VPP

Encapsulation: VxLAN

Benchmarks:
> Networks:

> Components:

>

>

>

> Service

>

Traffic Generator:

Profile: trex-local
Tool: TRex
Versions:

> Traffic_Generator:
build date: Nov 13 2017

version: v2.32
built _by: hhaim
mode: STL
build time: 10:58:17
VPP: 18.07
CiscoVIM: 2.3.46-17358
chain:
PVP:

> Traffic:
Profile: traffic profile 64B
Bidirectional: True
Flow count: 10000
Service chains count: 1
Compute nodes:

The following table shows the NFVBench result summary:

L2 Frame Size

64

Drop Rate

0.0000% 0

Avg Latency (usec) Min Latency (usec)

nan 0

The following table shows the NFVBench result configuration:

Direction

(bps)

Requested TX Rate

Actual TX Rate
(bps)

RX Rate
(bps

Requested TX Rate
(pps)

(inner VLAN tagging must be disabled)
5034 for middle internal network
5017 for right internal network

5000 for left internal network

[u'nova:a22-mchester-micro-1"']

Max Latency (usec)

Actual TX Rate
(pps)

RX Rate
(pps)

Forward 33.6000 Mbps 33.6000 Mbps 33.6000 Mbps 50,000 pps
Reverse 33.6000 Mbps 33.6000 Mbps 33.6000 Mbps 50,000 pps
Total 67.2000 Mbps 67.2000 Mbps 67.2000 Mbps 100,000 pps

The following table shows forward chain packet counters and latency:

Chain TRex.TX.p0 vpp.RX.vxlan_tunnel0 vpp.TX.veth/0 vpp.RX.veth/1

0 50,000 => = =

The following table shows reverse chain packet counters and latency:

Chain TRex.TX.p1 vpp.RX.vxlan_tunnel1 vpp.TX.veth/1 vpp.RX.veth/0

0 50,000 => => =>

vpp.TX.vxlan_tunnel1

=>

vpp.TX.vxlan_tunnel0

=>

50,000 pps
50,000 pps
100,000 pps

TRex.RX.p1

50,000

TRex.RX.p0

50,000

50,000 pps
50,000 pps
100,000 pps

Encapsulation
Encapsulation

NFVBench supports all networking options that can be deployed with Cisco VIM:
® OVS
® VPP with VLAN or VXLAN
® Single root input/output virtualization (SR-IOV)
By default, NFVBench uses VLAN tagging for the generated traffic and directs the traffic to the vswitch in the target compute node (OVS or VPP).

The following diagram illustrates an example of NFVBench execution with two chains using VLAN and when VPP is vswitch.

If VXLAN is enabled, it is possible to force the use of VXLAN using the —vxlan CLI option.
The provision of custom configuration allows you to specify more VxLAN options such as specific VNIs to use. For more details, check the default
configuration file.

The following diagram illustrates an example of NFVBench execution with two chains using VXLAN and when VPP is vswitch.
VTER COmputE

SR-I0V

If SR-IOV is deployed, NFVBench can support to send the traffic to the test VMs that use SR-IOV instead of vswitch.

To test SR-IOV, you must have compute nodes configured to support one or more SR-IOV interfaces (also knows as physical function (PF)) and
OpenStack to support SR-IOV.

You need to know:

® The name of the physical networks associated with the SR-IOV interfaces (this is a configuration in Nova compute).
®* The VLAN range to be used for the switch ports that are wired to the SR-IOV ports. Such switch ports are normally configured in trunk mode with
a range of VLAN IDs enabled on that port.

For example, if two SR-IOV ports exist per compute node, two physical networks are generally configured in OpenStack with a distinct name.
The VLAN range to use is also allocated and reserved by the network administrator and in coordination with the corresponding top of rack switch port

configuration.

To enable SR-IOV test, you must provide the following configuration options to NFVbench in the configuration file.
The following example instructs NFVBench to create the left and right networks of a PVP packet flow to run on two SRIOV ports named phys_sriov0

and phys_sriovl using respective segmentation_id 2000 and 2001:

sriov: true
internal_networks:

left:

segmentation_id: 2000
physical_network: phys_sriovo0
right:

segmentation_id: 2001
physical network: phys sriovl

The segmentation ID fields must be different.
In case of PVVP, the middle network must be provisioned properly. The same physical network can also be shared by the virtual networks, but with

different segmentation IDs.

Cisco VIM CLI
Cisco VIM CLI

An alternate way to NFVBench CLlI is to use ciscovimclient. Ciscovimclient provides an interface that is more consistent with the Cisco VIM CLI and can
run remotely while the NFVBench CLI is executed on the management node.

Pass JSON configuration matching the structure of the NFVBench configuration file to start a test:

[root@mgmtl ~]# ciscovim nfvbench --config '{"rate": "1l0kpps"}

oo oo +

| Name | value |
oo e LR +

| status | not_run |
| nfvbench request | {"rate": "Skpps"}

| uuid | 0£131259-d20£-420£-840d-363bdcc26eb? |

| created_at | 2017-06-26T18:15:24.228637 |

e T e LR +

Run the following command with the returned UUID to poll status:

[root@mgmtl ~]# ciscovim nfvbench --stat 0£131259-d20£f-420£f-840d-363bdcc26eb9

B i B i +

| Name | value

oo m s m o mm o B +

| status | nfvbench running

| nfvbench request | {"rate": "Skpps"}

| uuid | 0£131259-d20£-420£-840d-363bdcc26eb? |

| created_at | 2017-06-26T18:15:24.228637 |

| updated_at | 2017-06-26T18:15:32.385080

B i B i +

R i R e +

| Name | value

oo m s s m B el +

status	nfvbench completed
nfvbench request	{"rate": "Skpps"}
uuid	0£131259-d20£-420£-840d-363bdcc26eb9

| created_at | 2017-06-26T18:15:24.228637

| updated_at | 2017-06-26T18:18:32.045616 |

R i R e +

When the test is done, retrieve results in a JSON format:

[root@emgmtl ~]# ciscovim nfvbench --json 0£131259-d20f-420f-840d-363bdcc26eb9
{"status": "PROCESSED", "message": {"date": "2017-06-26 11:15:37", ...}}

NFVBench REST Interface

When enabled, the NFVBench container can also take benchmark request from a local REST interface. Access is only local to the management node in
the Cisco VIM (that is the REST client must run on the management node). For more details on the REST interface calls, see Cisco VIM REST API
Resources.

Auto-ToR Configuration via ACI API
Auto-ToR Configuration via ACI API

While the use of ACI plugin brings in the flexibility of dynamic allocation of tenant and provider VLANs on demand, it also ties the OVS version to the ACI
plugin. This leads to an extreme tight coupling of Cisco VIM and ACI.

With an APIC plugin, there are might be gaps to cover certain use-cases, for example, where there is a need to have flexibility of different access types
(tagged or non-tagged) for the same VLAN but for different servers.

To address such use-case or avoid tight coupling of OVS with ACI plugin, an optional solution is available to automate the target VLANs on the right switch
port based on the server role on Day 0 along with corresponding fabric access and tenant policy configurations via the ACI API.

With this option, the setup_data for each Cisco VIM instance is the single source for the server to switch port mappings. This solution can handle switch
provisioning with the correct VLANs during the addition or removal of server and provider/tenant VLAN range expansion via reconfiguration option. The
solution is based on the fact that the PV (port VLAN) count in a given ACI fabric domain is under the scale limits 10000 PV/ToR and 450000 PV/fabric.

NCS-5500 as ToR Option
NCS-5500 as ToR Option

Cisco VIM supports NCS-5500 as an alternate to a Nexus ToR. NCS-5500 is an I0S XR-based router which is similar to Nexus switches. You can use the
48 10/25G ports or the 6 40/100G uplink ports model to implement NCS-5500 (port-numbers depend on NCS version). Also, other SKUs of NCS-5500 are
supported as long as the NCS-5500 software supports the EVLAG feature.

NCS-5500 uses the technology of bridge domain to connect to the server. The auto-ToR configuration is enabled to support NCS-5500 as ToR. NCS-5500
supports a Micropod with more computes running on Intel 710 NICs with the mechanism driver of VPP over LACP. The support is extended to include 40G
/100G based NCS-5500 SKUs with splitter cables (of 4x10) connecting to the servers, which helps in increasing the server port density by four folds. For

more details, see ToR Management

Disk Management

Disk Management

Cisco VIM uses the disk-maintenance tool that gives you the ability to check the status of all hard disk drives present in the running and operational mode
in the following nodes:

® Management node.
® Specific or all controller servers.
® Specific or all compute servers.

The disk status such as online, offline, and rebuilding helps you to identify the disks in which slot has potentially gone bad and require to be physically
replaced in the server. It can be run on servers that have either a RAID controller or an SAS pass through controller.

Once the disk is physically replaced, you can use the disk management tool to add the new disk back into the system as part of the RAID system
(recommended one server at a time). For more information, see Disk and OSD Maintenance Tools.

1 Disk maintenance tool is useful only when one or two (in RAID6) disks is not working. Failure of more than one disk at a time sets the entire
server in an irrecoverable state. Replace the server using remove and add operations through Cisco VIM.

Disk management is not supported on HPE computes due to the licensing issue with the HPE SmartArray Utility tool.

Disk management is also not supported on DELL computes.

OSD Maintenance
OSD Maintenance

OSD maintenance tool gives you the ability to check the status of all OSDs and their corresponding physical hard disk drives present in the running and
operational storage nodes. The status of the OSDs is reported along with the HDD mapping. It helps you to identify the status of the OSD (Up or Down)
and its corresponding hard disk drive slot in the server that requires to be physically replaced. It can run on servers that have either a RAID or an SAS
passthrough controller.

Once the HDD to be physically replaced is identified, the same OSD tool can be used to re-balance the ceph tree, remove the OSD from the cluster, and
unmount the disk drive, in preparation for the disk removal. After the disk has been physically replaced, the tool can be used to add the new disk back into
the system as part of the Ceph cluster and recreate the OSD (only one HDD/OSD at a time). It ensures to replace a bad HDD, it is not required to remove
the ceph cluster from operation and then add it back through remove-storage and add-storage options in ciscovim. OSD Disk and OSD Maintenance Tools
section has the relevant details.

1 OSD tool does not support the replacement of the internal OS drives and external journal drives, for which you still have to add or remove OSD
nodes.

Power Management

Power Management of Computes for C-Series

Though many compute servers are available for Cisco VIM pods, only limited compute servers are actually used at certain times. To optimize the overall

power consumption of the data center, it is required to power down the server through an API/CLI.
To prevent the cloud destabilization, ensure that you do not power off all the compute nodes and maintain at least one pod in active state.
Pod management operation(s) applies to the entire pod during update and reconfiguration of the server. Update and reconfiguration are not possible under

the following circumstances:

® |f one or more compute nodes are powered off.
® Computes on which VMs are running cannot be powered-off.
® Computes with All-in-one (AlO) nodes in a micro-pod cannot be powered-off through this API.

When there is a power-off, the cloud-sanity is run internally. If the cloud-sanity fails, the power-off action is aborted. For more details, see Managing Power
and Reboot

Physical Cores and Reserved Memory

Physical Cores and Reserved Memory

Cisco VIM has been tuned to deliver performance from an infrastructure and VNF point of view. The following table gives the details of the physical cores
(regardless of whether hyperthread is enabled or not) that the infrastructure needs. The number of cores that are reserved for the system (host system +
OpenStack services) is minimum of two in all cases.

Pod Type/Node Types Control Storage Compute AlO HC Control/Compute

FullOn all all CPU: Q+V n/a n/a n/a
cores
RAM: 25+Vr GB

=

a CPU: Q+C+V n/a
cores
RAM: 41+Vr GB

Hyperconverged (hc) all n/a CPU: Q+V cores | n,

Micropod (aio) n/a n/a CPU: Q+V cores = CPU: Q+C+V n/a n/a
cores
RAM: 41+Vr GB

Edge-pod Q n/a CPU: Q+V cores n/a n/a CPU: Q+V cores

The following table shows the number of physical cores and RAM Reserved for Cisco VIM:

Variables Usage Valid range Default
Q Cores reserved for (host system and OpenStack Services) 2to 12 2
Cores reserved for CEPH (AIO and HC) 2t012 2
\Y Cores reserved for VPP vswitch 2t0o6 2
Vr RAM reserved for VPP 2GB

For OVS deployments, use V=0 and Vr=0
Some VPP deployments with high throughput requirements may require more than two VPP cores.

Software Hub
Cisco VIM Software Hub

Cisco VIM is supported in an air-gapped (disconnected mode) environment. You can use a USB or Cisco VIM Software Hub for an air-gapped install.
When the number of pods is more, shipping USBs for an air-gapped install and update is not scalable. In such scenarios, we recommend that you use
Cisco VIM Software Hub.

Cisco VIM Software Hub contains the Cisco VIM release artifacts such as buildnode ISO, Cisco VIM code, docker registry, and docker images. Using the
management node, you can access the release artifacts from the Cisco VIM Software Hub.

You can install the artifacts available on the Cisco VIM Software Hub server through a connected or a disconnected installation procedure. For a
connected installation, one end of the Cisco VIM Software Hub server is connected to the internet, while the other end is connected to the data center.
The following figure shows the architecture of a connected installation.

amazon
WED M S ‘f‘

Public Facing
Metwark

/ Enterprise Network \
JP P JP
I %
z/ /;
oaea oo e = KL
E o oda o E aaoga Wt E asaa
s s s
G S 5]
Mgmt. Node 1 Mgmt. Node 2 Mgmt. Node n

For a disconnected installation, both interfaces are private and the artifacts are installed on the Cisco VIM Software Hub using the USB procedure. You
must ensure that the ssh interface (br_api) of the management node for each Cisco VIM pod can connect to the enterprise facing interface of the Cisco
VIM Software Hub server through Layer 2 or Layer 3 networking. From Cisco VIM 3.0.0 onwards, the Cisco VIM Software Hub is supported over dual-
stack network. For more details on installation, see Installing Cisco VIM Software Hub

VXLAN EVPN Design
VXLAN EVPN Design

® Qverview
® Multi-VXLAN EVPN Design

Overview

From release Cisco VIM 2.4.3 seamless connectivity from VNFs of the private cloud to the customer premise private cloud is enabled.

The architecture of the Cisco VIM Tenant L2 connectivity is shown below:
Tenant-2
L gl \orari-n * Segment 1: Compute to Layer 2 Aggregation (Layer 2 EVLAG)
* VPP will establish EVPN based EVLAG with aggregation layer
+ Segment 2: Layer 2 Aggregation switch to Fabric
* Fabric node will establish redundancy with aggregation layer
* Segment 3: Infrastructure Control Plane
* EVPN between Compute VTEP and Remaote VTEP to enable dynamic MAC
learning
* Segment 4: Infrastructure Data Plane between Compute and Tenants
* VXLAN will be used as a data plane for traffic transport between
compute and Tenants
Segment 5: Overlay Control Plane Session between Private Cloud and VNF
* Overlay BGP session will be created between Customer private cloud and
WNEF
* Segment 6: Data Traffic from/to VNF to/from Customer Private Cloud
* Any traffic originated from VNF or customer Private cloud will be
encapsulated/decapsulated into VXLAN header
* (On Remote tunnel end, customer Rl will be looked up based on received
VNI in the packet
* On Compute node VPP will determine specific VNF port based on receive
VNI in the packet

To set up Cisco VIM tenant L2 connectivity architecture, the following assumptions are made:

® OpenStack can manage VLAN allocation.

® You must manage VXLAN network and subnet for overlays, and enable OpenStack to use the EVI/VNID by creating appropriate networks
/subnets in OpenStack. Cisco VIM supports VNI ranging from 1 to 65535.

® BGP configuration (peer, ASes) will be provided at the time of Cisco VIM cloud deployment through setup_data.yaml.

VXLAN tunnel is used for traffic between the VNF and customer Private cloud, while the VLAN is used for the traffic within the pod or across VNFs. EVPN
is used to share L2 reachability information to the remote end, and Cisco NCS 5500 in EVLAG mode acts as a conduit for the traffic. For the VXLAN/EPVN
solution to work, Cisco VIM and VXLAN tunnel peers with an external BGP route reflector to exchange IP address to Mac Binding information as shown in
the below figure.

SCATAE LA
WXLAN EVPN Fabric
Morh South Traffic
VILAN Backed 0 ke e
Border Leafs
Easy'West Traffic POD JOCAL - VLAN backed
- ,r‘r -
weP e e DD e PR + BGP Controd Plane on a POD Level
| | | | | | = Software VTEPs with VPP
WNF VNF WNF VINF VINF VINF = Layer 2 Overays with VELAN
= Simplified Role for the ToR

CVIM Compute Node CWIM Compute Mode CVIM Compute Node

From a control plane point of view, three instances of GoBGP (in Active-Active-Active mode) run on the controller nodes to establish L3 peering with the
external BGP RR for importing or exporting VXLAN routes into or from Cisco VIM respectively. The imported information is then pushed into etcd, to
maintain a single source of the information within Cisco VIM.

VPP agents create and program VTEP on VPP, and also create a VXLAN tunnel interface for the VM based on the VNI information from Neutron. VPP
updates VNF IP/MAC mapping in etcd, which gets exported out through EVPN to the BGP RR. The following figure shows the design of Cisco VIM VXLAN
EVPN Control Plan

BGP RR

__GV¥MController Node

CVIM Controller Node

CVIM Controller Node

GoBGP GaBGP GoBGP
Neutron Agent Neu;rﬂn Agent Neutron Agent
* | & &
* t y ¥ * ¥
i ETCD Data Store
Agant Aganit Agent
| | | | | |
VNE VINF VINF VNF VINF VINE

CVIM Compute Node

Multi-VXLAN EVPN Design

CVIM Compute Node

CVIM Compute Node

From release Cisco VIM 2.4.6 onwards, multiple-AS VXLAN EVPN overlay networks are supported. The following image depicts the schematic view of the
multiple-AS VXLAN EVPN overlay network.

North South VXLAN traffic

VHF VINF WHE WE WIF WHF

One set of VXLAN overlays manage the Cloud exchange traffic, while the other set of VXLAN overlays manage the Cloud management traffic. The multi-
VXLAN (multi refers to 2) is used to conserve the number of bridge domains (BD) consumed on the Cisco NCS 5500 ToR.

From the control plane point of view, it is similar to that of a single VXLAN architecture.

The multi-VXLAN EVPN based design optionally supports a static implementation of VXLAN technology through head-end replication (HER). HER helps
leverage the VXLAN technology, regardless of the hardware/software limitation in the VXLAN feature set at the remote end of the VTEP tunnel.

With the static information defined in the setup_data, VPP performs the HER to all defined remote VTEPs and updates L2FIB (MAC-IP) table based on
flood and learn. If EVPN co-exists with HER, Cisco VIM treats it as if two different sets of BGP speakers exist and provides information from each speaker
in the same etcd FIB table.

The only drawback of this implementation is that VPP may peform unnecessary flooding. Cisco VIM uses EVPN as the primary mechanism and HER as
the fallback methodology. You can add or remove HER to or from an existing EVPN pod through Cisco VIM reconfigure option.

VPP Port Mirroring Support
VPP Port Mirroring Support

® Architecture
® Limitations

From release Cisco VIM 2.4.3 onwards, all the network traffic between the VM and VPP is over a vhost interface which is in memory and does not use a

traditional kernel side interface, when VPP is used as the vSwitch in OpenStack. The network interface is no longer on the host and available within VM, to
trace packets or capture them for debugging or other administrative purposes.

Architecture
Port mirroring works by setting up the following:
1. A span port on vpp to mirror the Virtual Ethernet interface corresponding to the VMs vhost interface. This is a tap interface in VPP.

2. Atap device (tap0b20e7b0) on the compute host side is set as a kernel interface. A veth pair is created between the tap device on the VPP side
(tapcli-0) and kernel side tap device (tap0Ob20e7b0) as shown in the below figure.

MNeutron port]
Db20e Tb0-2307-8e5e-9748- 3036 3962d¥6

' :
i - |
; eth0 tap0b20e7b0 i
: ’ :
; :
= e
i]
: tapeli-0 '
H [] | !
: VirtualEthernet0/0,0 VEP i
i |
: BondEthernet®. 2028 i
BondEthernetd 5
“ compute host -~

g - -

TenGigabitEthernet2/8/1 TenGigabitEthernet5/8/1

Limitations

® The port mirror feature uses tap as the interface type for the mirrored traffic. VPP may drop packets designated for this interface, under high load
conditions or high traffic scenarios.

® You can only run the Port mirror CLI tools from the VPP container. This requires access to the compute node where the VM is running.

® You can only mirror the neutron ports managed by vpp-agent. This means that these have to be vhost interfaces belonging to Openstack VMs.
Non Virtual Ethernet interfaces are not supported.

Segment Routing EVPN
Cisco VIM Segment Routing EVPN Design

® Overview of Segment Routing EVPN
® Overview of Cisco VIM VPP Architecture
® Qverview of Cisco VIM SR EVPN Architecture

Overview of Segment Routing EVPN

An important aspect of any Telco cloud is how the cloud is connected to the rest of the service provider network. Due to the evolution of the existing VPP-
based standard VLAN and VXLAN EVPN designs, it is possible to connect Cisco VIM with an existing Segment Routing (SR) Ethernet VPN (EVPN). You
can connect Cisco VIM to the SR EVPN without an additional SDN controller, by peering with EVPN route reflectors and ToR with BGP Labeled Unicast
(BGP-LU). There is no contention with any controller that manages the EVPN. MPLS is used as the data plane for the SR-labelled traffic.

To connect a Cisco VIM pod to an SR EVPN, the existing VPP forwarding architecture is enhanced.

Overview of Cisco VIM VPP Architecture

Networking-vpp is the Vector Packet Processing (VPP) based software accelerated virtual switch that is part of Cisco VIM. The architecture of networking-
vpp is similar to a distributed SDN controller. However, it is not a separate controller and is integrated with Cisco VIM as a core component. Networking-
vpp makes installation, updates and operational Day 2 tasks seamlessly.

Networking-vpp uses a publish and subscribe model to configure the virtual switches running on each compute node. The controllers translate any
requests to the OpenStack API into the desired forwarding behavior of the VPP forwarders, and publish that information into the distributed state database.
The VPP agents that run on each compute node monitor the distributed state database and program according to the desired state that is published in the
distributed state database.

The controllers do not have to:

® Push configuration directly to the compute nodes.
® Validate the configuration.
® Continuously monitor the configuration of the compute nodes.

This behavior makes networking-vpp extremely efficient, resilient, and scalable. When a compute node restarts, it only needs to look at the distributed
state database to check how it forwards traffic to and from the virtual machines running on this compute node and configure itself. All this is transparent to
the controllers.

The figure below depicts the VPP architecture.

Request

Desired stale transiatod
into forwarding rules

Compute-x

The following steps explain the figure give above:

1. The agent running on the controllers gets the incoming requests and processes the API calls that relate to the state of the network data plane
forwarding.

2. The agent translates the request into the desired state of the network data plane and publishes this state into a distributed state database.

3. The vpp-agents running on the compute nodes watch the distributed state database. When they see a change relevant to the compute node, they
translate the desired state and update the VPP forwarding on the compute node.

Overview of Cisco VIM SR EVPN Architecture

To extend the networking-vpp architecture to support Segment Routing over MPLS, Cisco VIM 3.4.1 adds several additional components.

The figure below depicts the SR EVPN RR connections.

.-"'-'.-l.
~
y.- ,
/
- i
- P

-~ -

For the control plane, a BGP process runs on each of the three controller nodes. The controllers peer to the EVPN route reflectors. This peering allows the
Cisco VIM pod to exchange reachability information with the EVPN. Cisco VIM does an L2 stretch with only single-homed L2 routes. The peering with the
route reflectors allows Cisco VIM to exchange Type-2 routes that have MAC to IP bindings. Type-3 route updates are exchanged to handle broadcast,
unknown unicast and multicast (BUM) traffic. There are unidirectional MPLS tunnels in both directions.

In addition to the BGP peering with the EVPN route reflectors, the controllers have a BGP Labeled Unicast (BGP-LU) peering with the NCS ToRs to
exchange label information.

The figure below depicts the SR EVPN BGP-LU peering with the ToR.

Cisco VIM does not process any SR policies coming from BGP or an SDN controller to program any explicit static or dynamic paths into VPP. BGP-LU and
EVPN address family routes are processed by the BGP process running on each of the controllers. The BGP process publishes the SR policy into the
distributed state database so that the VPP agents can configure VPP forwarding on the compute nodes to apply the MPLS label to the outbound traffic.
The label between the compute node and the NCS ToR represents the path to node SID that identifies the VPP node. Bridge domain is identified by the
Openstack Segmentation ID that is used for tenant isolation.

The data plane ports in the Cisco VIM pod are connected to the NCS with an L3 link and EVLAG provides link redundancy to the nodes. The VPP agents
encapsulate the traffic leaving the compute node with an MPLS label representing the Segment Routing segment ID. The virtual machines are unaware
that traffic will be sent over an SR-enabled network. For traffic arriving on the compute node from the NCS, the MPLS label represents the bridge domain,
and the resulting L2 lookup determines the virtual machine to which to forward the traffic after stripping the MPLS header.

The figure below depicts the control plane port connectivity.

SAMX

« Storage

« API

« Management
Provision

The control plane ports on the Cisco VIM nodes have two uplinks, one to each NCS. From the node, the two ports are bundled in a port-channel using the
linux teaming driver. ISIS runs on the NCS and provides link redundancy between the two ToRs using EVLAG. The control plane ports carry any or all of
the following networks: storage network to access the CEPH cluster, API network hosting the OpenStack API, Management and provision networks used
at install time to provision the nodes and during Day 2 operations for management tasks.

The figure below depicts the data plane port connectivity.

« Provider

« External
Tenant

The VPP backed data plane ports are configured differently. Each NIC has a port connected to one NCS. This link is a routed link with an IP address both
on the NIC port in the Cisco VIM node and an IP address on the NCS port. These addresses come from a /30 subnet. ISIS runs between the NCS and
BGP-LU. On the Cisco VIM nodes, ECMP load balancing occurs over the two links to the NCS. On VPP, there is a loopback interface configured that is
used as the SR node SID.

Ports C and D are SR-IOV ports that give the virtual machines direct access to the NIC through the VF interfaces. These are out of scope for the SR EVPN
implementation on Cisco VIM.

Container Workload
Container Workload Support

Cisco VIM supports VM, baremetal, or container-based workloads. To support the container-based workloads, Cisco VIM hosts Cisco Container Platform
as an application. The orchestrator creates a common OpenStack tenant and deploys the Cisco Container Platform control plane on it. The orchestrator

can also create a tenant cluster if needed.
The Kubernetes clusters deployed are multi-master clusters with three master nodes and N worker nodes. The Cisco Container Platform control plane

consists of three masters and three workers. The master and worker nodes run as VMs on OpenStack.

Management Node Centralization
Management Node Centralization

® Qverview
® Terminology Used
® Architecture

Overview

As dedicated management node is available for each pod, an additional cost of a server is involved with respect to space, power, and capital expenditure.
As the cloud is moving to the edge, justifying the cost of a server on a per cloud basis becomes challenging. Hence, it is important that Cisco VIM evolves
as a platform to support centralization of the management node. To support centralization, the management node is virtualized into a VM, which is then
shipped as a QCOW2 image as part of the release. This concept has also been extended to Unified Management and Cisco VIM software hub.

Terminology Used

Management node VM - A VM managing a pod.

Management node - A baremetal managing a pod.

Cisco VIM management pod - A pod hosting management node VMs. It can be a shared pod with other workloads.
Locally managed pod - A pod that is managed by a local management node.

Remotely managed pod - A pod that is managed remotely by a management node.

Architecture

The management node VM is Layer 3 adjacent to the pod as depicted in the figure below:

=

———— —

Cy A

Provision &
Managirment
Traffic

sl il

Wl e
‘ — e mg

To support the architecture of management node centralization, the following prerequisites must be met:

* The cloud management network is routable from the management node VM.

* The management node VM must have access to BMC/CIMC.

* The pod servers must support remote-presence or equivalent tool, for example, VMCLI for Quanta.
« Solution uses iPXE to fetch kernel, initrd, and kickstart over httpd.

For detailed information and usage, see Centralizing Management Node

L3 Fabric Deployment
Cisco VIM in Layer 3 Fabric Deployment

To avoid pitfalls of traditional switching, modern data center network fabrics are built using Layer 3 (L3) routing like Equal-cost Multi-path Routing (ECMP),
leaf-spine architecture, and overlay technologies like VXLAN.

From Cisco VIM 3.4.6, the VXLAN fabric is deployed to allow a single Cisco VIM pod to span across multiple pairs of Nexus 9000 ToR leaf switches that
are attached to one L3 routed fabric (not ACI).

To support thousands of unique provider (p)/tenant (t) networks within a single Cisco VIM pod, use VPP as the virtual switch that encapsulates provider
ltenant network traffic into VXLAN packets. The packets are then sent over the VLAN associated with Cisco VIM provider/tenant network segments. Thus,
Cisco VIM compute nodes send VxLAN-over-VLAN frames to the ToR switches.

The ToR switches:

® Remove the VLAN tag and route the resulting VXLAN packet through the L3 fabric for handing North_South traffic.

® Direct the East-West traffic towards the destination compute node within the VLAN, when the compute nodes are attached to same ToR. The
destination compute node receives VxLAN-over-VLAN frames and removes the VLAN tag before passing the VxLAN packet to VPP which in turn
removes the VXLAN header and sends the packet to the VM.

® Encapsulate the incoming VxLAN-over-VLAN frame into a VXLAN packet corresponding to the provider/tenant network segment and
then routes that VXLAN-over-VXLAN packet towards the destination ToR, when the compute nodes are attached to different pairs of ToRs
connected via L3 fabric. The destination ToR removes the outer VXLAN header (corresponding to provider/tenant segment), and
then switches the traffic towards the destination compute node within the VLAN. The destination compute node receives VxLAN-over-VLAN
frames and removes the VLAN tag before passing the VXLAN packet to VPP which in turn removes the VxLAN header and sends the packet to

the VM.

For implementation details, see L3 Fabric Deployment Details

OpenStack Barbican
OpenStack Barbican

Overview

Barbican, also known as the Key Manager service, manages secrets such as keys and passwords. The implementation consists of three components:

® Barbican Worker
® Barbican Keystone Listener

As with other OpenStack services, Barbican uses a SQL database to store metadata about the managed secrets and a message queue for communication

Barbican API

between its components.

Barbican supports different types of secret storage back ends, including hardware security modules.

For more information, see the following:

Key Manager service overview
OpenStack Barbican Architecture
Configuring Secret Store Back-end

Barbican APl Documentation

Volume encryption supported by the key manager

Barbican Architecture in Cisco VIM

The following are the assumptions in Barbican architecture:

In Cisco VIM, Barbican components are deployed on the Cisco VIM controller nodes only as depicted below:

\

Hardware Security Modules (HSM) exists in the network that is reachable by the Cisco VIM pod.
Installation and management of the HSM are outside the scope of Cisco VIM and are done ahead of time.

You must provide HSM client cert, client key, HSM server cert(s), and IP addresses.

The HSM must be reachable from Cisco VIM controller nodes via the management network of Cisco VIM.

All testing and validation are done by using ATOS Trustway Proteccio NetHSM.

You need to extract the libnethsm.so file from the ATOS client software, for example, Proteccio1.09.03.iso offline, copy it into the management
node, and update the relevant line of the setup data to point to /ibnethsm.so location in the management node.
Though Barbican can be configured to use multiple secret stores, Cisco VIM allows only one secret store back end to be configured at a time.

API

' Barbican

CVIM Barbican Deployment Model

Controller Node 1

Barbican
Keystone

Barbican
Worker

Listener

A

c

Listener J
o

Also, following is a typical layout of a Cisco VIM pod interacting with a network-accessible HSM. The HSM must be reachable from the Cisco VIM
controller nodes via the management network. The HSM is deployed, configured, and managed externally to Cisco VIM.

e

i
ontroller Node 2|

Barbican
AP

Barbican
Worker

Barbican
Keystone

L
’

L3

Barbican |
API

Barbican
Worker |

Barbican |
Keystone
Listener

IIH('.:l:lntr~‘.'.‘|4h?tr Nﬂde}

A

https://docs.openstack.org/barbican/train/install/get_started.html
https://docs.openstack.org/barbican/train/contributor/architecture.html
https://docs.openstack.org/barbican/train/install/barbican-backend.html
https://docs.openstack.org/barbican/train/api/index.html
https://docs.openstack.org/cinder/train/configuration/block-storage/volume-encryption.html

CVIM with Network HSM

CVIM pod

Management
Node

network

-| Controllers

{| Computes

=

Hardware
Security
Module

When Barbican is installed on a Cisco VIM pod, Cinder and Nova uses Barbican to store and retrieve volume encryption keys. Barbican is an optional
service that can be included in the initial installation or added with a reconfigure operation. For details on how to enable Barbican see Enabling Barbican

Management Network Over TLS
Management Network Over TLS

Cisco VIM is designed to secure the connections between nodes in the pod over the management network using TLS. For releases earlier to Cisco VIM
4.0.0, all external interfaces are protected over TLS, but not the intra-node management traffic. If management network over TLS is not enabled, ensure
that traffic over the management network flows on a non-routable address space.

From Cisco VIM 4.0.0, you can optionally enable management network over TLS either on Day 0 via fresh installation or Day 2 via reconfiguration. For
more details, see Enabling Management Network over TLS. The OpenStack control plan architecture is designed to run OpenStack API services behind
the reverse proxy (apache) with mod_wsgi/uwsgi implementation as shown in the below figure.

Tisvpd
- HAProxy e PERAR S

\ [Fom pow |
1]
Bijaedy

MiSw1.3 TSI

* HAP rony | E OpenStack AP

OpenStack client |

Huw pow
i
auoedy

e
A

| TSl 3
E)
| ARy " OpenStack AP

1w P
o
aaedy

% OpanStack Controller Node . °

br_apl

br_ gl

With TLS management network enabled, OpenStack endpoints are hosted over https. The required certificates are created during orchestration and then
distributed to Cisco VIM nodes such as controllers and computes, so that OpenStack services communicate over a secure channel.

Support of Pre-encrypted Image
Support of Pre-encrypted Image

From Cisco VIM 4.0.0, you can use pre-encrypted images under the assumption that Barbican is enabled. The following aspects of security are addressed:

® Privacy: Prevents the possibility of leaking information from the image without the encryption key.
® Integrity: Prevents the possibility of modifying the software without the encryption key.

To build encrypted images, you must have your own infrastructure. Planning and implementation of mechanism to build encrypted images is outside the
scope of Cisco VIM. As Cisco VIM is an embedded solution, Cisco neither recommends nor supports the installation of additional software on the servers
managed by Cisco VIM. For more details, see Usage of Pre-encrypted Images.

Installation

Installation

Cisco NFVI Installation Overview

Installation Preparation Without Internet Access
Preparing for Cisco NFVI Installation

Centralizing Management Node

CVIM Monitor and Inventory Service Configuration
Highly Available CVIM Monitor

Cisco VIM

Unified Management

Cisco NFVI Installation Overview

Cisco NFVI Installation Overview

Cisco NFVI installation is divided into two processes:

® Preparation—Preparing the Cisco NFVI pod hardware and configuring all supporting applications including Cisco Integrated Management

Controller (IMC) and Cisco UCS Manager.
® |nstallation—Installing the Cisco NFVI component applications such as Cisco Virtualized Infrastructure Manager (VIM) and Cisco Unified

Management (UM) based on your Cisco NFVI package.

Cisco NFVI installation depends on the component applications that you install. When installing Cisco VIM UM, install the Cisco VIM management node
and UM node in a sequence to complete the Cisco VIM installation through Cisco VIM UM. However, if you have Cisco VIM without other Cisco NFVI
applications in your package, you can install the Cisco VIM alone in your system.

Consider the following factors before installing the Cisco NFVI components:

® Internet Access: Internet access is required to download the Cisco NFVI installation files from cvim-registry.com. If you do not have an Internet
access to your management node, you need an alternate server with an Internet access to download the installation files to a USB stick. You can
copy the installation files from USB stick to the management node.

® Cisco NFVI Configurations: Cisco NFVI configurations are included in the setup_data.yaml file. If you are installing Cisco VIM and not Cisco
VIM Insight, you can enter the configurations directly into the setup_data.yaml file with a yaml editor. You can refer to the examples in setup_data
file (for C-series) at the openstack-configs directory in the target install folder in the management node. For more information on Cisco NFVI data
and OpenStack parameters, see OpenStack Configuration. If you are installing Cisco VIM UM, run Cisco NFVI using Insight Ul wizard. For more
information, see Unified Management.

Following are the license options for installing Cisco NFVI:

® Cisco NFVI Basic: Includes Cisco Virtual Infrastructure Manager (VIM) which is an OpenStack Trains release software solution used to enhance

the functionality, scale, and performance of the node.
® Cisco NFVI Standard: Includes Cisco VIM and Cisco VIM Insight. Cisco VIM Insight deploys, provisions, and manages Cisco NFVI on Cisco UCS

servers.
® Cisco NFVI with third-party monitoring: Includes Cisco VIM with or without Cisco VIM UM based on the license option chosen, with monitoring of

the pod through CVIMMON.

You must perform extra manual installation procedures while installing Cisco VIM. If your package includes Cisco VIM and UM, you must do Cisco VIM
manual setup and configuration procedures through UM. You can manage cloud in Cisco VIM through Cisco VIM UM. Once you start managing the cloud,
Cisco recommends you to continue using Cisco VIM UM for future use as well.

http://cvim-registry.com

Installation Preparation Without Internet Access

Preparing for Installation on Servers Without Internet Access

® Air-gapped Installation Approach

® Prerequisites for Air-Gapped Installation
® NFVI Installation Setup via USB

® NFVI Installation File-Based Image

Air-gapped Installation Approach
Approaches for Air-Gapped Installation

Listed below are the two approaches for air-gapped installation in Cisco VIM.

® Approach 1: Getting the artifacts onto USB from a staging server running CentOS/RHEL 8.2
® Approach 2: Creating a file based image on the staging server running CentOS/RHEL 8.2

For both the approaches, the staging server is connected to the docker registry.
In the first approach, you can do the installation independently post preparation of the USB. However, it involves an additional burden of shipping the

physical USBs to each pod, which may be cumbersome. In the second approach of file based image, the burden associated with first approach is reduced.
However, each management node must be connected to the staging server.

Prerequisites for Air-Gapped Installation

Prerequisites for Air-Gapped Installation

Prerequisites for Air-gapped Installation via USB

1. Download the Cisco NFVI installation files to a 64GB (minimum) USB 2.0 drive on a staging server with Internet access. If the management node
is based on M5 or a Quanta server, you can optionally use USB 3.0 64GB to increase the installation speed significantly.
2. Copy the files to the management node.

Prerequisites for Air-gapped Installation via File-based image

1. The CentOS/RHEL 8.2 staging server (VM, laptop, or UCS server) is connected to the docker registry.
2. Each management node must be connected to this staging server.
3. Ensure that the packages truncate and parted with kpartx installed on the CentOS/RHEL 8.2 staging server.

NFVI Installation Setup via USB
NFVI Installation Setup via USB

Following procedure describes how to download the Cisco NFVI installation files onto a USB drive of the staging server with Internet access. You can use
the USB to load the Cisco NFVI installation files onto the management node without Internet access.

1 Cisco recommends to use Virtual Network Computing (VNC), other terminal multiplexers, or similar screen sessions to complete these steps.

@ Before you begin

You must have a CentOS/RHEL 8.2 staging server (VM, laptop, or UCS server) with a 64 GB USB 2.0 drive only. You can use USB 3.0 64GB if
the management node is of type M5. The staging server must have wired Internet connection to download the Cisco VIM installation files onto
the USB drive. Once downloaded, you can copy the installation files onto the management node from USB drive.

1" Downloading of the installation files (over 25 GB in size) to the USB drive might take several hours depending on the speed of your Internet
connection. Ensure that you disable the CentOS to the sleep mode, for faster installation.

1. On the staging server, use yum to install the following packages:

® PyYAML (yum install PyYAML)
® python-requests (yum install python-requests)

Check whether python 3.6.x version is installed. If not, perform yum install python3.
2. Log into Cisco VIM software download site and download the getartifacts.py script from external registry:

download the new getartifacts.py file (see example below)

curl -o getartifacts.py -u '<usernames:<passwords>' https://cvim-registry.com/mercury-releases/cvim40-
rhel8-osplé6/releases/<releaseid>/getartifacts.py

Change the permission of getartifacts.py

chmod +x getartifacts.py

3. Run getartifacts.py. The script formats the USB 2.0 drive (or USB 3.0 drive for M5/Quanta based management node) and downloads the
installation files. You must provide the registry username and password, tag ID, and USB partition on the staging server.

./getartifacts.py -h

usage: getartifacts.py [-h] -t TAG -u USERNAME -p PASSWORD [--proxy PROXY]
[--retry] (-d DRIVE | -f FILE)
[--mgmtk8s | --argus | --insight | --sds | -U]

Script to pull container images en masse.

optional arguments:

-h, --help show this help message and exit
-t TAG, --tag TAG Installer version to pull
-u USERNAME, --username USERNAME
Registry username
-p PASSWORD, --password PASSWORD
Registry password
--proxy PROXY https proxy if needed
--retry Try to complete a previous fetch
-d DRIVE, --drive DRIVE
Provide usb drive path
-f FILE, --file FILE location of image file
--mgmtk8s Additionally download CVIM MON HA artifacts
--argus Additionally download argus artifacts
--insight Additionally download insight artifacts
--sds Additionally download sds artifacts
-U, --upgrade Additionally download artifacts for upgrade from 2.4.x

This script pulls images from remote registry then copies the contents to USB
drive or image file based on the user supplied option

4. To identify the USB drive, execute the Isb/lk command before and after inserting the USB drive. The command displays a list of available block
devices. The output data helps you to find the USB drive location. Provide the entire drive path in the —d option instead of any partition as shown
below. Here, the tag_id refers to the Cisco VIM 4.x.

For example:

sudo ./getartifacts.py -t <tag_id> -u <username> -p <password> -d </dev/sdc> \[--proxy proxy.example.
com\] -

Ensure that you do not remove the USB drive during synchronization.

1" On executing getartifacts.py, the following message appears to notify bad superblock and mount failure. In this case, reformat the drive
and use the fsck command to recover the drive: fsck.ext4-pv/dev/sdc1 .
stderr:mount:wrongfstype,badoption,badsuperblock on /dev/sdc1, missing codepage or helper program, or other error.

1" As the size of the artifacts is greater than 25G, it is recommended to execute this step over a wired internet connection. It takes few
hours to download and populate data on the USB drive, depending on internet connectivity.

The getartifacts.py script downloads the following:
a. Core packages

buildnode-K9.iso

buildnode-K9.qcow?2

mercury-installer.tar.gz

ironic-images-K9.tar.gz

registry-2.6.2.tar.gz

docker images and manifests
python-docker-py-1.10.6-4.el7.noarch.rpm
python-docker-pycreds-1.10.6-4.el7.noarch.rpm
python-websocket-client-0.32.0-116.el7.noarch.rpm
vim_upgrade_orchestrator.py

1 Forupgrade, the python-docker-py-1.10.6-4.el7.noarch.rpm, python-docker-pycreds-1.10.6-4.el7.noarch.rpm, python-
websocket-client-0.32.0-116.el7.noarch.rom, and vim_upgrade_orchestrator.py packages are required.

b. Respective checksums all_check_sum_file.sign.tar.gz
5. Use the following command to verify the downloaded artifacts and container images:

create a directory
sudo mkdir -p /mnt/Cisco

/dev/sdc is the USB drive, same as supplied in getartifacts.py python script
#You need to mount the partition with the steps given below:
sudo mount /dev/sdcl /mnt/Cisco

cd /mnt/Cisco

execute the test-usb help to look at the options
./test-usb -h

usage: ./test-usb [-h] -- Show this program to check integrity of artifacts in this USB drive/image file
[-a] -- Check integrity of all (core and all) artifacts in this USB drive/image File
[-1] -- Location of artifacts
[-f] -- Location of image file
[-U] -- test upgrade artifacts from 2.4.x to 3.4.y

execute the verification script
./test-usb

failures will be explicitly displayed on screen, sample success output below# sample output of ./test-
usb with 3.4.1 release
#./test-usb
INFO: Checking the integrity of artifacts on this USB drive
INFO: Checking artifact python-docker-py-1.10.6-4.el7.noarch.rpm
INFO: Checking artifact python-docker-pycreds-1.10.6-4.el7.noarch.rpm
INFO: Checking artifact python-websocket-client-0.32.0-116.el7.noarch.rpm
INFO: Checking artifact vim_ upgrade_ orchestrator.py
INFO: Checking artifact mercury-installer.tar.gz
INFO: Checking artifact ironic-images-K9.tar.gz
INFO: Checking artifact buildnode-K9.iso
INFO: Checking artifact buildnode-K9.gcow2
INFO: Checking artifact registry-2.6.2.tar.gz
INFO: Checking required layers:
INFO: 764 layer files passed checksum.

./test-usb -a
INFO: Checking the integrity of artifacts on this USB drive
INFO: Checking artifact python-docker-py-1.10.6-4.el7.noarch.rpm
INFO: Checking artifact python-docker-pycreds-1.10.6-4.el7.noarch.rpm
INFO: Checking artifact python-websocket-client-0.32.0-116.el7.noarch.rpm
INFO: Checking artifact vim upgrade_orchestrator.py
INFO: Checking artifact mercury-installer.tar.gz
INFO: Checking artifact ironic-images-K9.tar.gz
INFO: Checking artifact buildnode-K9.iso
INFO: Checking artifact builnode-K9.gcow2
INFO: Checking artifact registry-2.6.2.tar.gz
INFO: Checking artifact mariadb-app-K9.tar.gz
INFO: Checking artifact insight-K9.tar.gz
INFO: Checking required layers:
INFO: 764 layer files passed checksum.

If the download fails, an error message is displayed.

For example:

./test-usb

INFO: Checking the integrity of this USB stick

INFO: Checking artifact buildnode-K9.iso

ERROR: Checksum for artifact buildnode-K9.iso does not match ('SHA512 (buildnode-K9.iso) =
96ec62a0932a0d69daf60acceb8af2dc4e5ecal32cdld3781fcl7a494592feb52a7f171eda25e59¢c0d326£fbb09194eedab6036cbde3
870dafe74f59cf1f2dce225"

I= 'SHA512 (buildnode-K9.iso) =
a6a9e79fa08254e720a80868555679baecea2dd8f26a0360ad47540eda831617beal0514al17bl2ee5£36415b7540afall2alc904cd
69e40d704a8£25d78867acf ")

INFO: Checking artifact registry-2.3.l.tar.gz

ERROR: Artifact registry-2.3.1l.tar.gz is not present

INFO: Checking required layers:

ERROR: Layer file sha256:002aalfO0fbdaea7ea25dald906e732fe9a9b7458d45£8ef7216d1b4314e05207 has a bad
checksum

ERROR: Layer file sha256:5be3293a81773938cdbl18f7174bf595fe7323fdc018c715914ad41434d995799 has a bad
checksum

ERROR: Layer file sha256:8009d9e798d9%acea2d5a3005be39bcbfe77b9a928e8d6c84374768ed19¢c97059 has a bad
checksum

ERROR: Layer file sha256:ea55b2fc29b95d835dl6d7eeac42fa82f17e985161ca%94a0f61846deffflad9c8 has a bad
checksum

INFO: 544 layer files passed checksum.

6. To resolve download artifact failures, unmount the USB and run the getartifacts command again with the --retry option.

sudo ./getartifacts.py -t <tag id> -u <username> -p <passwords> -d </dev/sdc> --retry

7. Mount the USB and then run the test-usb command to validate if all the files are downloaded:

/dev/sdc is the USB drive, same as supplied in get artifacts.py python script

sudo mount /dev/sdal /mnt/Cisco

cd /mnt/Cisco

execute the verification script

./test-usb

In case of failures the out of the above command will explicitly display the same on the screen

8. When the USB integrity test is done, unmount the USB drive by running the following command:

sudo unmount /mnt/Cisco

NFVI Installation File-Based Image
NFVI Installation via File-Based Image

Installation Overview
Assumption
Prerequisites
Procedure

Installation Overview
To download Cisco VIM artifacts for disconnected installation, an image file based option is available for deployments where shipping of physical USB is

not feasible for an air-gapped installation.

@ Before you begin

You must have a CentOS/RHEL 8.2 staging server (VM, laptop, or UCS server) that is connected to the docker registry. Also, each
management node must be connected to this staging server.

Download the Cisco VIM artifacts to a file-based image on the staging server (running CentOS/RHEL 8.2) that is connected to the docker registry. Once
the artifacts are downloaded, copy the corresponding file-based image to the management node and subsequently import the respective artifacts to the
management node. You can apply the same method of importing the artifacts for an update or upgrade procedure if desired.

Assumption
® This feature is effective from Cisco VIM 3.4.3 and can be used only for fresh installation of Cisco VIM 3.4.3 and higher versions. Also, you can

use it to execute update starting Cisco VIM 3.4.3.
® In the setup_data.yaml, INSTALL_MODE must be set to disconnected.

Prerequisites

Ensure that the packages truncate and gets parted with kpartx installed on the CentOS/RHEL 8.2 staging server, that is connected to the docker registry.

Procedure

Following are the steps that outline the process:
1. On the staging server, use yum to install the following packages:

® PyYAML (yum install PyYAML)
® python-requests (yum install python-requests)

Check whether python 3.6.x version is installed. If not, perform yum install python3.
2. To download artifacts to file-based image (which is approximately 60GB in size), log into Cisco VIM software download site and download the geta
rtifacts.py script from external registry onto the staging server:

curl -o getartifacts.py -u '<usernames:<passwords>' https://cvim-registry.com/mercury-releases/cvimd0-
rhel8-osplé6/releases/<releaseid>/getartifacts.py

Change the permission of getartificats.py

chmod +x getartifacts.py

3. On the staging server, execute the getartifacts.py script with the --ﬁle option to download the correct target artifacts:

#./getartifacts.py -u <username> -p <password> -t <release-tag> --file /dir/path/to/file --proxy PROXY
Example of the execution
./getartifacts.py -u installer -p password -t 4.0.0 --file /var/artifacts-4-0-0.img

1" As this process cannot be aborted in the middle, it is recommended to use either a VNC session/screen/KVM or serial console.

For upgrade from Cisco VIM 3.4.x (x = 4, 5, or 6) to Cisco VIM 4.0.0, the above command gets appended with -U or --upgrade:

#./getartifacts.py -u <username> -p <password> -t <release-tag> --file /dir/path/to/file --proxy PROXY -
U

1" To download additional target artifacts, check the help option of getartifacts.py.

4. On the staging server, verify the integrity and consistency of the downloaded artifacts in the file-based image:

curl -o mercury-installer.tar.gz https://username:password@cvim-registry.com/mercury-releases/cvim34-
rhel7-ospl3/releases/<releaseid>/mercury-installer.tar.gz

tar --no-same-owner -xvzf mercury-installer.tar.gz

cd installer-xxx/tools/

./test-usb -f /var/artifacts-<release tags>.img

5. Copy the file-based image /var/artifacts-<release_tag>.img from the staging server to /var/ of the target management node:

scp /var/artifacts-<release_tag>.img root@<management-node-ip>:/var/

Repeat the test-usb on the management node (from the installer-xxx/tools work space) for consistency
check

cd installer-3.4.3/tools/

./test-usb -f /var/artifacts-<release_tag>.img

Execution Snippet:

/test-usb -f /var/artifacts.img

INFO: Checking the integrity of artifacts on this Image file

INFO: Checking artifact python-docker-py-1.10.6-4.el7.noarch.rpm

INFO: Checking artifact python-docker-pycreds-1.10.6-4.el7.noarch.rpm
INFO: Checking artifact python-websocket-client-0.32.0-116.el7.noarch.rpm
INFO: Checking artifact vim_upgrade_ orchestrator.py

INFO: Checking artifact mercury-installer-internal.tar.gz

INFO: Checking artifact ironic-images-internal.tar.gz

INFO: Checking artifact buildnode-internal-24641.iso

INFO: Checking artifact registry-2.6.2-internal-24641.tar.gz

INFO: Checking artifact buildnode-internal-24641.gcow2

INFO: Checking required layers:

INFO: 782 layer files passed checksum

6. To import the artifacts onto the management node., execute import_artifacts.sh with -f option on the management node, and provide the location
of the file-based image:

cd /root/installer-<release tag>/tools/

./import_artifacts.sh -f /var/artifacts-<release tag>.img
./import artifacts.sh -h
import_artifacts.sh : Program to import artifacts from USB

usage: ./import artifacts.sh

-s : Specify this flag is importing on SDS server

-f : Specify this flag along with image file location as a argument to import artifacts
-h : To display this help

Preparing for Cisco NFVI Installation

Preparing for Cisco NFVI Installation

Cisco NFVI Hardware Installation

ToR Switch Configuration for C-Series Pods
Preparing Cisco IMC

Management Node on UCS C-series (M4/M5)
Management Node on Quanta Servers

Cisco VIM Software Hub

UCS C-Series Pod

Out-of-Band Management Switch

Third-Party Compute Support

Cisco NFVI Hardware Installation
Cisco NFVI Hardware Installation

Switch on the servers, before you install the Cisco VIM. Set up the CIMC connection so that the servers are reachable from the management node via br_a
pi. The following table lists the UCS hardware options and network connectivity protocol used with VLAN over OVS, or VLAN over VPP.

UCS Pod Type Compute and Controller Storage Node Network Connectivity Protocol
Node
Rack Type UCS C220/240 M4/M5 UCS C240 M4/M5 (SFF) OVS/VLAN or VPP/VLAN
(only on intel NIC) or ACI/VLAN (selected HW
option)
Rack Type Controller: UCS C220/240 UCS C240 M4 (SFF) OVS/VLAN

Compute: HP DL360 Gen9
Compute: Dell PowerEdge 740 Quanta Server
Quanta servers for fullon or edge

pod

Micropod UCS 240 M4/M5 Not applicable as it is integrated with compute and QOVS/VLAN or VPP/VLAN (on intel NIC)
Quanta Servers controler OVS/VLAN for Quanta

C-series UCS 240 M4/M5 UCS C240 M4/M5 (SFF) OVS/VLAN

Hyperconverged

1 For BOM details, contact Cisco VIM Product Management team
For more information on Cisco vNICs, see LAN and SAN Connectivity for a Cisco UCS Blade.
In addition, the Cisco Nexus 9372 or 93180YC, or 9396PX is also available to serve the Cisco NFVI ToR function. Newer versions of Nexus work as long
as it supports virtual port channel and is compatible with the server NIC.
The figure below shows a schematic C-Series Cisco NFVI pod. Although the figure shows a full complement of UCS C220 compute nodes, the number of

compute nodes vary depending on the implementation requirements. The UCS C220 control and compute nodes can be replaced with UCS 240 series.
However, in that case the number of computes fitting in one chassis system is reduced by half. The following figure shows the Cisco NFVI C-series pod.

3 - Mimuis OK TOR Svelches

3x - G220 ControlMetwork Modes

1x - G20 InstalL ogingost

Mz - GFM Compule Hodes

ERR Ry

-
o
s
H
e
e
-
T
—
ol
-
L
-
-
-
-
E
-
-
-
-
-
-
B
|
-
i
!

L

- G240 Ceph Block Slorape Nodes

For more information on wiring schematic of various pod configuration, see Wiring Diagrams.

https://www.cisco.com/c/en/us/support/docs/servers-unified-computing/ucs-manager/110202-lan-san-connectivity-ucs.html

ToR Switch Configuration for C-Series Pods
ToR Switch Configuration for C-Series Pods

During installation, the Cisco VIM installer creates vNICs on each of the two physical interfaces and creates a bond for the Cisco UCS C-series pod.
Before the installation, manually configure the ToR switches to create a vPC with the two interfaces connected to each server. Use identical Cisco Nexus

9372, 93180YC, or 9396PX switches for the ToRs. Cisco recommends you to use the N9K ToR software versions for setup: 9.3(3). For information on the
wiring details for each pod type for a C-series-based installation, see Wiring Diagrams.

Complete the following steps to create a vPC on a pair of Cisco Nexus ToR switches. The steps use the following topology as an example. Modify the
configuration as per your environment. The following figure shows a sample ToR configuration.

Topa _[E234 W ToRB |

Ethif Ethif1

contral-1
emiz ——] contolz | —— E2
Etnt/s ———] control3 | ——— Ethir3
Ethi/4 W‘ Eth1/4
Ethiss ———] impﬂ]— Ethi/5
Eth1/6 [compute-3 Eth1/6

Eth1/7 storage-1 Eth1/7
Eth1/8 — storage-2 Eth1/8
Eth1/a —— storage-3 Eth1/9

Eth1/10 build-1] Eth1/10

Cisco VIM optionally supports the auto-configuration of ToR for N9K series only. If auto-configuration of ToR is enabled, you can skip the following steps:

1. Change the vPC domain ID for your configuration. The vPC domain ID can be a unique number. The IP address on the other switch mgmtO port
is used for the keepalive IP. Change it to the IP used for your network.

For the preceding example, the following is the configuration:

ToR-A (mgmtO is 172.18.116.185)

feature vpc

vpc domain 116

peer-keepalive destination 172.18.116.186

ToR-B (mgmtO is 172.18.116.186)

feature vpc

vpc domain 116

peer-keepalive destination 172.18.116.185

As both switches are cabled identically, the remaining configuration is identical for both switches. In this example, topology Eth2/3 and Eth2/4 are
connected to each other and combined into a port channel that functions as the vPC peer link.

feature lacp

interface Ethernet2/3-4
channel-group 116 mode active

interface port-channelllé
switchport mode trunk
vpc peer-link

2. For each VLAN type (mgmt_vlan, tenant_vlan_range, storage, api, external, provider), execute the following on each ToR:

vlan <vlan_ type> no shut

3. Configure all the interfaces that are connected to the servers as the members of the port channels. In the example, only ten interfaces are shown.
But you must configure all interfaces that are connected to the server.

1 Ifinterfaces have configuration from previous deployments, you can remove them by entering default interface Eth1/1-10, then no
interface Po1-10.

a. For deployment with any mechanism driver on Cisco VIC:

There is no configuration differences among different roles (controllers/computes/storage). The same configuration applies to all
interfaces.

interface Ethernet 1/1
channel-group 1 mode active
interface Ethernet 1/2
channel-group 2 mode active
interface Ethernet 1/3
channel-group 3 mode active
interface Ethernet 1/4
channel-group 4 mode active
interface Ethernet 1/5
channel-group 5 mode active
interface Ethernet 1/6
channel-group 6 mode active
interface Ethernet 1/7
channel-group 7 mode active
interface Ethernet 1/8
channel-group 8 mode active
interface Ethernet 1/9
channel-group 9 mode active
interface Ethernet 1/10
channel-group 10 mode active

b. For deployment with OVS/VPP with VLAN on Intel NIC:

The interface configuration is the same as the Cisco VIC as shown in the above section. However, the number of switch interfaces that
are configured is more in the case of Intel NIC as it has dedicated control and data physical ports. For SRIOV switch port, no port
channel is configured and the participating VLAN can be in trunk mode. In the case of pod-based on Quanta servers or HPE or DELL as
computes, configure the control and data plane VLANS in trunk mode on the switch ports connected to the OCP and LOM cards,
respectively.

4. Configure the port-channel interface as vPC and trunk all VLANs. For Intel NIC, you must configure native VLAN and set it to mgmt VLAN on the
control ports so that PXE boot does not fail. Skip to listen or learn in spanning tree transitions, and ensure that you do not suspend the ports if
LACP packets are not received. Also, configure it with a large MTU of 9216 to avoid Ceph installation failure. The last configuration allows you to
start the servers before the bonding is set up.

interface port-channel 1-9

shutdown

spanning-tree port type edge trunk

spanning-tree bpdufilter enable

switchport mode trunk

switchport trunk native vlan mgmt_vlan for the control ports when Intel NIC is used
switchport trunk allowed vlan <mgmt_ vlan, tenant vlan range, storage, api, external, providers
no lacp suspend-individual

mtu 9216

vpc <1-9>

no shutdown

5. Identify the port-channel interface that connects to the management node on the ToR:

interface port-channel

shutdown

spanning-tree port type edge trunk
switchport mode trunk

switchport trunk allowed vlan <mgmt_vlan>
no lacp suspend-individual

vpc 10

no shutdown

6. Check the port-channel summary status. The ports connected to the neighbor switch have to be in P state. Before the server installation, the
server facing interfaces must be in / state. After installation, they have to be in P state, which means they are up and in port-channel mode.

gen-leaf-1# show port-channel summary

Flags: D - Down P - Up in port-channel (members)
I - Individual H - Hot-standby (LACP only)

s - Suspended r - Module-removed

S - Switched R - Routed

U - Up (port-channel)

M - Not in use. Min-links not met

Group Port- Type Protocol Member Ports

Channel

Pol(SD) Eth LACP Ethl/1

1 ((1)
2 Po2(SD) Eth LACP Ethl/2(I)
3 Po3(SD) Eth LACP Ethl/3(I)
4 Po4 (SD) Eth LACP Ethl/4(I)
5 Po5(SD) Eth LACP Ethl/5(I)
6 Po6 (SD) Eth LACP Ethl/6(I)
7 Po7(SD) Eth LACP Ethl/7(I)
8 Po8(SD) Eth LACP Ethl1/8(I)

9 Po9(SD) Eth LACP Ethl/9(I)
10 PolO(SD) Eth LACP Eth1/10(I)
116 Poll6(SD) Eth LACP Ethl/116(I)

7. Enable automatic Cisco NX-OS errdisable state recovery:

errdisable recovery cause link-flap
errdisable recovery interval 30

Cisco NX-OS places links that flap repeatedly into errdisable state to prevent spanning tree convergence problems caused by non-functioning of
hardware. During Cisco VIM installation, the server occasionally triggers the link flap threshold. Hence, enabling automatic recovery of this error is
recommended.

errdisable recovery cause link-flap
errdisable recovery interval 30

8. Enable jumbo packets and configure 9216 MTU on the port-channel or Ethernet interfaces. For example:

Port channel:
interface port-channell0
switchport mode trunk
switchport trunk allowed vlan 80,323,680,860,2680,3122-3250
mtu 9216
vpc 10
Ethernet:
interface Ethernetl/25
switchport mode trunk
switchport trunk allowed vlan 80,323,680,860,2680,3122-3250
mtu 9216

Preparing Cisco IMC
Preparing Cisco IMC

Cisco NFVI requires specific Cisco Integrated Management Controller (IMC) and firmware versions and parameters. The Cisco VIM bare metal installation
uses the Cisco IMC credentials to access the Cisco IMC interface which is used to delete and create vNICS and to create bonds.
Complete the following steps to verify if Cisco IMC and UCS manager are ready for Cisco NFVI installation:

1. Verify that each Cisco UCS server uses Cisco IMC firmware version of either 2.0 series (2.0(13i) or greater preferably 2.0(13n)), or 3.0 series
(use 3.0.3(f) or later). You can download the latest Cisco IMC ISO image from the Cisco Software Download site. For upgrade procedures, see
the Cisco UCS C-Series Rack-Mount Server BIOS Upgrade Guide.

2. For Cisco UCS C-series pods, verify whether the following Cisco IMC information is added: IP address, username, and password.

3. Verify that no legacy DHCP/Cobbler/PXE servers are connected to your UCS servers. If so, disconnect or disable the interface connected to
legacy DHCP, Cobbler, or PXE server. Also, delete the system from the legacy cobbler server.

4. Verify if Cisco IMC has NTP enabled and is set to the same NTP server and same time zone as the operating system.

http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/c/sw/bios/b_Upgrading_BIOS_Firmware.html

Management Node on UCS C-series (M4/M5)
Installing Management Node on UCS C-series (M4/M5)

This procedure installs RHEL with the following modifications:

® Hard disk drives are setup in RAID 6 configuration with one spare drive for deploying eight drives, two spare drives for deploying 9 to 16 drives, or
four spare drives for deploying 17 to 24 drives.

* Networking: Two bridge interfaces are created; one for the installer API (br_api off the LOM interfaces) and the other for provisioning (br_mgmt off
the Cisco VIC on the MLOM or off a X710 based Intel NIC depending on the BOM). Each bridge interface has underlying interfaces bonded
together with 802.3ad. Provision interfaces are 10/40 GE interfaces (either off Cisco VICs or X710 Intel NIC (first 2 ports of Intel NIC)). API
interfaces are 1/10 GE LOMs based on the BOM. For using NFVbench, you require another NIC card constituting off 2xIntel 520, or 2xIntel
710XL, or 4xIntel710 X. For management node BOM (Intel NIC based), ensure that you place the NIC for NFVbench at a slot higher than that of
the br_mgmt based Intel NIC.

® The installer code is placed in /root/.

® SELinux is enabled on the management node for security.

@ Before you Begin

® Verify whether the Cisco NFVI management node where you plan to install the Red Hat for Enterprise Linux (RHEL) operating system
is a Cisco UCS C240 M4/M5 Small Form Factor (SFF) with 8, 16, or 24 hard disk (HDDs) or Solid State (SSDs) drives.

® Check if the management node is connected to your enterprise NTP and DNS servers. If your management node server does not meet
these requirements, do not continue until you install a qualified Cisco UCS C240 server. Also, ensure that the pod contains Mobile Rich
Media Ad Interface Definitions (MRAID) card.

1. Log into the CIMC GUI of Cisco NFVI management node.
2. Follow steps in Configuring the Server Boot Order to set the boot order to boot from local HDD.
3. Follow steps in Cisco UCS Configure BIOS Parameters to set the following advanced BIOS settings:

For management node based on UCS M4 boxes, set the following for BIOS parameters:

PCI ROM CLP-Disabled

PCH SATA Mode—AHCI

All Onboard LOM Ports—Enabled
LOM Port 1 OptionROM—Disabled
LOM Port 2 OptionROM—-Disabled
All PCIe Slots OptionROM—Enabled
PCIe Slot:1 OptionROM—Enabled

PCIe Slot:2 OptionROM—Enabled

PCIe Slot: MLOM OptionROM—Disabled
PCIe Slot:HBA OptionROM—Enabled

PCIe Slot:FrontPciel OptionROM—Enabled
PCIe Slot:MLOM Link Speed—GEN3

PCIe Slot:Riserl Link Speed—GEN3

PCIe Slot:Riser2 Link Speed—GEN3

MLOM OptionROM—Enabled

For management node based on UCS M5 boxes, set the following for BIOS parameters:

All Onboard LOM Ports—Enabled
LOM Port 1 OptionROM—-Disabled
LOM Port 2 OptionROM—Disabled
PCIe Slot:1 OptionROM—Enabled
PCIe Slot:2 OptionROM—Enabled
MLOM OptionROM—Enabled

MRAID OptionROM—Enabled

Other parameters must be set to default.
4. Click Save Changes.
5. Add the management node vNICs to the provisioning VLAN to provide the management node with access to the provisioning network:

a. In the CIMC navigation area, click the Server tab and select Inventory.
b. In the main window, click the Cisco VIC Adapters > General Tab, and then click Reset to Default tab.

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/ucsscu/user/guide/30/UCS_SCU/bootraid.html
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/gui/config/guide/2-0/b_UCSM_GUI_Configuration_Guide_2_0/b_UCSM_GUI_Configuration_Guide_2_0_chapter_011100.html#task_B8ECD17A5606457CA72CAFD95D670FF1

© 00 ~NO

OO WN =

© N

1" Delete any additional vNICs configured on the UCS server beyond the two default ones.

. Download the ISO on a local server that can serve HTTP and use CIMC GUI to mount the ISO under Cisco IMC Mapped vMedia.
. In CIMC, launch the KVM console.

. Mount the Cisco VIM Build node ISO image as a virtual DVD.

. Reboot the UCS server, then press F6 to enter the boot menu.

10.
. From the boot menu, select Install Cisco VIM Management Node. This is default selection and it gets automatically selected after the timeout.
12.

Select the CIMC mapped DVD to boot the Cisco VIM Build node ISO image provided with the install artifacts.
At the prompts, enter values of the required parameters to install the Management node:

® Select the mode this Management node will serve—Enter 1 for Standard Management node, 2 for Unified Management node, or 3 for
Software Distribution System node

® Hostname—Enter the management node hostname (The hostname length must be 32 or fewer characters).

® Select Yes to Install as Unified Management only when required. Migration from one to another is not supported.

® API IPv4 address—Enter the management node API IPv4 address in CIDR (Classless Inter-Domain Routing) format. For example,
172.29.86.62/26

® API| Gateway IPv4 address—Enter the API network default gateway IPv4 address.

® MGMT IPv4 address—Enter the management node MGMT IPv4 address in CIDR format. For example, 10.30.118.69/26

1 The MGMT IPv4 entry is not required if the management node is installed as unified management node only.

® Prompt to enable static IPv6 address configuration—Enter Yes to continue input similar IPv6 address configuration for APl and MGMT
network, or No to skip if IPv6 is not needed.

® API IPv6 address—Enter the management node API IPv6 address in CIDR (Classless Inter-Domain Routing) format. For example, 2001:

c5c0:1234:5678:1001::5/8.

Gateway IPv6 address—Enter the API network default gateway IPv6 address.

MGMT IPv6 address—Enter the management node MGMT IPv6 address in CIDR format. For example, 2001:¢5c¢0:1234:5678:1002::5/80

DNS server—Enter the DNS server IPv4 address or IPv6 address if static IPv6 address is enabled.

Option for Teaming Driver for Link Aggregation <Yes/No> — Select Yes if Nexus switch is ToR, and No if Cisco NCS 5500 is ToR.

Option for setting MGMT's Link Aggregation to active-active (802.3ad) mode <Yes|No> — Enter Yes for active-active mode or No for

active-backup mode. Most commonly, the Active-active mode is the recommended mode. The active-backup mode is recommended

only when CIMC is in in-band shared mode without using the dedicated CIMC mgmt port.

After you enter the management node IP addresses, the Installation options menu appears with several options. Fill in the options as listed below
(option 8 and 2) and leave the other fields as it is. If you are unable to start the installation, enter r to refresh the Installation menu.

. From the Installation menu, select option 8 to enter the root password.

. From the Installation menu, select option 2 to enter the time zone.

. Under the Timezone settings, select option 1, as option 2 is not supported.
. Enter the number corresponding to your time zone.

. Enter the number for your region.

. Choose the city and then confirm the time zone settings.

1 NTP server IP must not be entered at the time of setting the time zone.

. After confirming your time zone settings, enter b to start the installation.
. After the installation is complete, press Return to reboot the server.
. After the reboot, check the management node clock using the Linux date command to ensure that the TLS certificates are valid, for example:

#date

Mon Aug 22 05:36:39 PDT 2016
To set date:

#date -s '2016-08-21 22:40:00"'
Sun Aug 21 22:40:00 PDT 2016
To check for date:

#date

Sun Aug 21 22:40:02 PDT 2016

Management Node on Quanta Servers
Installing Management Node on Quanta Servers

Most of the settings in the server remain default.

@ To run NFVbench, you must enable the Intel VT for Directed 1/0 (VT-d) on the Management node.

To enable the Intel VT for Directed 1/O, navigate to the following path:

BIOS Setup > Socket Configuration > IlO Configuration > Intel VT for Directed 1/0 (VT-d) > Intel VT for Directed 1/0 (VT-d) > Enable

Intel® VT for [Enable]

d I/0 (WT-d)

To enable NFVbench on a Quanta management node:

Reboot the MGMT node, press F2 or DEL to enter BIOS:

Choose Socket Configuration > 110 Configuration > Intel(R) VT for Directed /0 (VT-d).
Set Intel(R) VT for Directed 1/0 (VT-d) to Enable

Press F10 to save and exit.

Cisco VIM Software Hub
Installing Cisco VIM Software Hub

Prerequisites for Cisco VIM Software Hub Nodes

Prerequisites for Cisco VIM Software Hub Server

Installing Cisco VIM Software Hub Node

Setting up Cisco VIM Software Hub for Cisco VIM Artifact Distribution
Installing Cisco VIM Software Hub in Connected Mode

Installing Cisco VIM Software Hub in Air-Gapped Mode

Installing Pod from Cisco VIM Software Hub Server

Supported Day 2 Operations

Cisco VIM Software Hub alleviates the need for Cisco VIM management nodes to have internet connectivity and helps to remove the logistics of shipping
USBs to multiple pods across the enterprise for software installation or update of the cloud.

Cisco VIM Software Hub is also referred as Software Delivery Server, therefore you might encounter references to SDS in the configuration
files, directory paths, and automation outputs.

Prerequisites for Cisco VIM Software Hub Nodes

Ensure that the Cisco VIM management nodes have connectivity to the Cisco VIM Software hub.

Ensure that the Cisco VIM Software Hub node where you want to install the buildnode.iso file is Cisco VIM SDS BOM compliant
Ensure that the Cisco VIM Software Hub node is connected to the enterprise NTP and DNS servers.

Ensure that the Cisco VIM Software Hub node contains hardware MRAID and a cache card.

Prerequisites for Cisco VIM Software Hub Server

1.

TLS certificate (For production environment)

On the Cisco VIM Software Hub server, configure a secure registry so that the pods can obtain the container images over TLS. You need to
provide a certificate signed by a trusted third-party CA authority and the CommonName in the certificate must match the Cisco VIM Software Hub
Registry FQDN name. The sds_setup_data.yaml file has 3 fields:

® SSL_CERT_FILE: Path of x509 certificate obtained from a trusted CA authority

® SSL_CERT_KEY_FILE: Path of private key obtained from a trusted CA authority

® SSL_CERT_CHAIN_FILE: Path of a single ssl cert chain file. The trusted CA authority might provide you the x509 cert for your domain,
intermediate x509 cert, and root CA cert.
You need to create a single SSL cert chain file using the commands below:

cat <x509 domain cert> >> ssl_chain file.cer
cat <intermediate ca cert> >> ssl_chain file.cer # cat <root ca cert> >> ssl_chain_ file.cer

. Self-signed certificate (For internal use)

Cisco recommends you to use a trusted CA-signed certificate, when a Cisco VIM Software Hub node is used in a production environment. For
internal testing and POC, Cisco supports Cisco VIM Software Hub node with a self-signed certificate.
Follow the below steps to generate the self-signed certificate:

openssl genrsa -des3 -out https_reverse proxy.key 2048

openssl req -new -key https reverse proxy.key -out https reverse proxy.csr
cp https_reverse_proxy.key https_ reverse proxy.key.org

openssl rsa -in https_reverse_proxy.key.org -out https_reverse_ proxy.key
openssl x509 -req -days 365 -in https_reverse proxy.csr -signkey
https_reverse_ proxy.key -out https_reverse proxy.cer

H H H H H

Generate the certificate with the same FQDN as specified in the sds_setup_data.yaml. Populate the SSL_CERT_FILE, SSL_CERT_KEY_FILE
and SSL_CERT_CHAIN_FILE in sds_setup_data.yaml. In case of a self-signed certificate, use the same x509 certificate for both cert file and cert
chain file. You need to manually trust the self-signed certificate. The operator needs to execute the commands below on both Cisco VIM Software
Hub server and Cisco VIM pod management node:

cp <x509 cert> /etc/pki/ca-trust/source/anchors/ca.crt
update-ca-trust extract

For docker registry to work with self-signed certificates, execute the commands below on the SDS server:

mkdir /etc/docker/certs.d/<fgdn>
cp <x509 cert> /etc/docker/certs.d/<fgdn>/ca.crt

3. DNS server:

Ensure that the DNS server can reach the pods and the Cisco VIM Software Hub server. The DNS server must be able to resolve the Cisco VIM
Software Hub Registry FQDN. If the enterprise does not have a unified DNS, then you need to populate the /etc/hosts file with FQDN after
provisioning a node using the ISO archive file.

Installing Cisco VIM Software Hub Node

The steps to install a Cisco VIM Software Hub node are similar to the steps in Management Node on UCS C-series (M4/M5). The only difference being, in
Step 11 of the task, you need to choose the option to configure the server as a Cisco VIM Software Hub server. In the subsequent prompts, you can enter
information such as the hostname, ipv4 or ipv6 addresses for br_public and br_private interfaces, and gateway addresses, similar to the Management
Node on UCS C-series (M4/M5).

The node is installed with RHEL 7.6 with the following modifications:

® Hard disk drives are set up in RAID 6 configuration with two spare HDDs for a 16 HDDs deployment or four spare HDDs for a 24 HDDs
deployment.

® Two bridge interfaces are created, namely, br_public and br_private. In case of a connected Cisco VIM Software Hub server, the br_public
interface is connected to the internet. The br_private interface is local to your datacenter. The management node for every Cisco VIM pod must
be reachable to the br_private interface of Cisco VIM Software Hub server through the br_api interface. Each bridge interface has underlying
interfaces bonded together with 802.3ad. For the Cisco VIM Software Hub, the private interfaces are over 10/25 GE Cisco VICs/ Intel NIC, while
the public interfaces are 1 GE LOMs.

® Security_Enhanced Linux (SELinux) is enabled on the management node for security.

The Cisco VIM Software Hub code consists of packages with installer code. After provisioning the server with ISO, the installer code is placed in the
following path:

/root/cvim_sds-<tags>

Setting up Cisco VIM Software Hub for Cisco VIM Artifact Distribution

You must configure a sds_setup_data.yaml file for each installer workspace.

1. Copy the example file from the openstack-configs directory and save it as sds_setup_data.yaml.
2. If you want to install a release tag on a Cisco VIM Software Hub server, update the fields in the sds_setup_data.yaml file as required.

Configuration File:

This file is used as an inventory file to setup CVIM SDS (software delivery server).
HHEH R R R R

User Defined Configuration File.

Information in this file is specific to the SDS setup.

HHH R

SSL_CERT_FILE: <abs_location_for cert_path of x509 certificate>

SSL_CERT KEY FILE: <abs location for cert priv key of x509 certificate>
SSL_CERT_CHAIN_FILE: <abs_location_ for cert_chain file of x509 certificate>

HH##HHH R

Cisco Virtualized Infrastructure Manager Installation Guide, 3.0.0

94

Preparing for Cisco NFVI Installation

Installing Cisco VIM Software Hub Node

Registry credentials to access the CVIM registry (Cisco Supplied)

HE##H R R

CVIM_REGISTRY NAME: <satellite.fgdn.com> # optional, needed to download artifacts from another
SDS server; FQDN of the source SDS server

CVIM_REGISTRY_ USERNAME: <username>
CVIM_REGISTRY_PASSWORD: <passwords>

NETWORKING:

Max. NTP servers = 4, min of 1

ntp_servers: <ntp.serverl.fgdn.com, ntp.server2.fqgdn.com >

or

ntp servers: [ipv6 address, 'ipv4 address'] # "," separated IPv4 or IPv6 address info
http_proxy server: <proxy.domain.com:8080> # optional, needed if the pod is behind a proxy
https_proxy server: <proxy.domain.com:8080> # optional, needed if the pod is behind a proxy
SDS_REGISTRY NAME: <satellite.fgdn.com> #SDS registry name needs to resolve to valid IP
SDS_REGISTRY_USERNAME: <username>

SDS_REGISTRY PASSWORD: <password>

(Optional)SDS users who can only pull images from SDS docker registry

SDS_READ ONLY USERS:

- username: <userl>

password: <passwordl>

- username: <user2>

password: <password2s>

3. Save the sds_setup_data.yaml file in the following path:

openstack-configs
directory under /root/cvim_ sds-<tag>

Installing Cisco VIM Software Hub in Connected Mode
In the connected mode, the Cisco VIM Software Hub server having a publicly routable IP address can connect to the cvim-registry or to another Cisco VIM
Software Hub server having the target artifacts and the registry. When the Cisco VIM Software Hub server is initially configured with the ISO, Cisco VIM
Software Hub workspace of that release is pre-installed in the /root/ directory.

1. Download the mercury-installer.tar.gz file of the release that you want.

2. Unzip the zip file manually and rename the unzipped file as cvim_sds-<release>.

3. Perform the following steps:

a) Place a valid TLS certificate in the directory:

/root/cvim_sds-<tag>/openstack-configs

b) Update the fields of the Cisco VIM Software Hub setup data file and save it in the following directory:

/root/cvim_sds-<tag> openstack-configs

4. To install the release on the Cisco VIM Software Hub server, navigate to the following directory on the Cisco VIM Software Hub server:

/root/cvim_sds-<target-tags>

5. Run the following command:

cd to /root/cvim_sds-<target-tag>
./sds_runner/runner.py

The command validates the Cisco VIM Software Hub node hardware, the contents of the sds_setup_data.yaml file, and the validity of the TLS
certificate, and then obtains the artifacts from the external Cisco VIM release registry and populates the Cisco VIM Software Hub server.

Installing Cisco VIM Software Hub in Air-Gapped Mode

Cisco VIM Software Hub is installed in the air-gapped mode when the Cisco VIM Software Hub server in the datacenter does not have internet
connectivity. You can use the USB drive to load the installation files on the Cisco VIM Software Hub node. The installation files are over 25 GB in size.
Downloading them to the USB drive may take several hours depending on the speed of your internet connection.

Before you begin

® Ensure that you have set up a CentOS/RHEL 8.2 staging server (VM, laptop, or UCS server) with a 64 GB USB 2.0 drive.

® Ensure that you have internet, preferably a wired connection, to download the Cisco VIM installation files, which you want to load onto the
USB drive.

® Ensure that you have disabled the CentOS sleep mode.

1. On the staging server, use yum to install the following packages:
a) PyYAML

b) python-requests

Check whether python 3.6.x version is installed. If not, perform yum install python3.
2. Access the Cisco VIM software download web site using a web browser.
3. Log in with the credentials provided by your account representative and download the getartifacts.py script from the external registry.

download the new getartifacts.py file

curl -o getartifacts.py -u '<usernames:<passwords>' https://cvim-registry.com/mercury-releases/cvim4o0-
rhel8-osplé6/releases/<releaseid>/getartifacts.py

Change the permission of getartificats.py

chmod +x getartifacts.py

4. Run the getartifacts.py script. The script formats the USB 2.0 drive (or USB 3.0 drive for M5-based management node) and downloads the
installation files. You must provide the registry username and password, tag ID, and USB partition on the staging server.

./getartifacts.py -h

usage: getartifacts.py [-h] -t TAG -u USERNAME -p PASSWORD [--proxy PROXY]
[--retry] (-d DRIVE | -f FILE)
[--mgmtk8s | --argus | --insight | --sds | -U]

Script to pull container images en masse.

optional arguments:

-h, --help show this help message and exit
-t TAG, --tag TAG Installer version to pull
-u USERNAME, --username USERNAME
Registry username
-p PASSWORD, --password PASSWORD
Registry password
--proxy PROXY https_proxy if needed
--retry Try to complete a previous fetch
-d DRIVE, --drive DRIVE
Provide usb drive path
-f FILE, --file FILE location of image file
--mgmtk8s Additionally download CVIM MON HA artifacts
--argus Additionally download argus artifacts
--insight Additionally download insight artifacts
--sds Additionally download sds artifacts
-U, --upgrade Additionally download artifacts for upgrade from 2.4.x

This script pulls images from remote registry then copies the contents to USB
drive or image file based on the user supplied option

The getartifacts.py script gets the images from the remote registry and copies the contents to the USB drive.

5. To identify the USB drive, execute the Isblk command before and after inserting the USB drive. The command displays a list of available block
devices. You can use the output data to find the location of the USB drive. You must provide the entire drive path in the —d option instead of any
partition.

For USB example:

sudo ./getartifacts.py -t <tag id> -u <username> -p <passwords> -d </dev/sdc> --sds [--proxy proxy.
example.com]

For file-based image, follow the example below:

sudo ./getartifacts.py -t <tag id> -u <username> -p <passwords> -f /var/<artifacts-x-y-z.img> --sds [--
proxy proxy.example.com]

6. Verify the integrity of the downloaded artifacts and container images.

create a directory sudo mkdir -p /mnt/Cisco

/dev/sdc is the USB drive, same as supplied in getartifacts.py python script sudo mount /dev/sdcl
/mnt/Cisco

cd /mnt/Cisco

execute the test-usb help to look at the options

./test-usb -h

usage: ./test-usb [-h] -- Show this program to check integrity of artifacts in this USB drive/image file
[-a] -- Check integrity of all (core and all) artifacts in this USB drive/image File
[-1] -- Location of artifacts
[-f] -- Location of image file
[-U] -- test upgrade artifacts from 2.4.x to 3.4.y

execute the verification script

./test-usb

failures will be explicitly displayed on screen, sample success output below

sample output of ./test-usb execution with 3.0.0 release

#./test-usb

INFO: Checking the integrity of this USB drive

INFO: Checking artifact buildnode-K9.iso

INFO: Checking artifact registry-3.0.0.tar.gz

INFO: Checking the integrity of this USB drive

INFO: Checking artifact buildnode-K9.iso

INFO: Checking artifact registry-3.0.0.tar.gz

INFO: Checking artifact mariadb-app-K9.tar.gz

INFO: Checking artifact haproxy-K9.tar.gz

INFO: Checking artifact insight-K9.tar.gz

Node

INFO: Checking required layers:

INFO: 548 layer files passed checksum.

If a failure occurs, an error message is displayed. For example:

./test-usb

INFO: Checking the integrity of this USB drive

INFO: Checking artifact buildnode-K9.iso

ERROR: Checksum for artifact buildnode-K9.iso does not match ('SHA512 (buildnode-K9.iso) =
96ec62a0932a0d69daf60acceb8af2dc4eSecall32cd3781fcl7a494592feb52a7f171eda25e59¢c0d326£bb09194eeda66036cbde3
870dafe74£59cflf2dce225"

!= 'SHA512 (buildnode-K9.iso) =
a6a9e79fa08254e720a80868555679%9baecea2dd8f26a0360ad47540eda831617beal0514al17bl2ee5£36415b7540afall2alc904cd
69e40d704a8f25d78867acf ')

INFO: Checking artifact registry-3.4.2.tar.gz

ERROR: Artifact registry-3.4.2.tar.gz is not present INFO: Checking required layers:

ERROR: Layer file sha256:002aalf0fbdaea7ea25dald906e732fe9a9b7458d45£8ef7216d1b4314e05207 has a bad
checksum

ERROR: Layer file sha256:5be3293a81773938cdb18£f7174bf595fe7323fdc018c715914ad41434d995799 has a bad
checksum

ERROR: Layer file sha256:8009d9e798d9%acea2d5a3005be39bcbfe77b9a928e8d6c84374768ed19¢c97059 has a bad
checksum

Cisco Virtualized Infrastructure Manager Installation Guide, 3.4.x

97

Preparing for Cisco NFVI Installation

Installing Cisco VIM Software Hub in Air-Gapped Mode

ERROR: Layer file sha256:ea55b2fc29b95d835d1l6d7eeac42fa82f17e985161cad94a0f61846deffflad9c8 has a bad
checksum

INFO: 544 layer files passed checksum.

7. To resolve failure in downloading artifacts, unmount the USB and run the getartifacts command again with the --retry option.

sudo ./getartifacts.py -t <tag_id> -u <username> -p <password> -d </dev/sdc> --sds --retry

8. Mount the USB and then run the test-usb command to validate if all the files are downloaded.

/dev/sdc is the USB drive, same as supplied in getartifacts.py python script
sudo mount /dev/sdal /mnt/Cisco
cd /mnt/Cisco

9. Execute the verification script:

./test-usb
In case of failures the out of the command displays a message indicating the same on the screen

For file-based image, execute the verification script:

./test-usb -f /var/<artifacts-x-y-z.img>
In case of failures the out of the command displays a message indicating the same on the screen

10. When the USB integrity test is complete, unmount the USB using the below command:

sudo umount /mnt/Cisco

11. After the artifacts of a target release are saved on the USB, you must unplug the USB from the staging server, connect it to the Cisco VIM
Software Hub server, and then perform the following steps on the Cisco VIM Software Hub server:

a. Provision your Cisco VIM Software Hub server with the build node ISO of that release and then connect the USB to the Cisco VIM
Software Hub server.

b. To copy the contents of the USB to the Cisco VIM Software Hub server, navigate to the /root/cvim_sds-<tag> directory, and then execute
the import artifacts command.

cd ~/cvim_sds-<tag>/tools
./import_artifacts.sh -s

To copy the contents off the file based image to the Cisco VIM Software Hub server, navigate to the /root/cvim_sds-<tag> directory, and
then execute the import artifacts command.

cd ~/cvim_sds-<tag>/tools
./import_artifacts.sh -s -f /var/<artifacts-x-y-z.img>

. Place a valid TLS certificate in /root/cvim_sds-<tag>/openstack-configs directory.

. Configure the Cisco VIM Software Hub setup data file with all the fields and placed the file in the /root/cvim_sds-<tag>/openstack-configs
directory.

e. Install the release on the Cisco VIM Software Hub server.

f. Navigate to the cvim_sds directory on the Cisco VIM Software Hub server and execute the following command:

[o NN e}

cd /root/cvim_sds-<tag>
./sds_runner/runner.py
Usage: runner.py [options]

Runner

Options:

-h, --help show this help message and exit

-1, --list_steps List steps

-s SKIP_STEPS, --skip steps=SKIP_STEPS

Comma separated list of steps to skip. eg -s 2,3
-p PERFORM_STEPS, --perform=PERFORM_STEPS

-y, --yes Yes option to skip steps without prompt

Installing Pod from Cisco VIM Software Hub Server

When you want to install a Cisco VIM pod using the artifacts obtained from the Cisco VIM Software Hub server, you need to provide an additional
parameter in setup_data.yaml. Ensure that the release artifacts are pre-installed on the Cisco VIM Software Hub server and that the setup_data.yaml file is
populated with the pod details. Provide the registry FQDN name for install through Cisco VIM Software Hub. For example, your domain.com.

REGISTRY NAME: '<registry name>' # Mandatory parameter.

Cisco VIM pod setup_data.yaml requires the REGISTRY_USERNAME and REGISTRY_PASSWORD to connect to the docker registry and fetch docker
images. To fetch the docker images from Cisco VIM Software Hub node, provide the user credentials available in the SDS_READ_ONLY_USERS section
of sds_setup_data.yaml. The details of an admin user with read/write access to docker registry are provided in SDS_REGISTRY_USERNAME and
SDS_REGISTRY_PASSWORD field. So, it is recommended to have a read-only user on Cisco VIM pod.

The Cisco VIM management node must have connectivity to the organization's DNS server to resolve the Cisco VIM Software Hub server domain.

1 The Cisco VIM management node must have connectivity to the organization's DNS server to resolve the Cisco VIM Software Hub server
domain.

Supported Day 2 Operations
The following Day 2 operations are supported on the Cisco VIM Software Hub server:

Reconfiguration of Cisco VIM Software Hub TLS certificate and Cisco VIM Software Hub registry credentials.
Cisco VIM Software Hub server backup and restore.

Execution of registry cleanup script.

Manual update of few packages in the maintenance window.

Eali o

UCS C-Series Pod
Setting Up UCS C-Series Pod

® Procedure
® Utility Details

Procedure
After you install the RHEL OS on the management node, perform the following steps to set up the Cisco UCS C-series servers:

1. Log into CIMC GUI of Cisco NFVI management node.
2. Follow steps in Configuring the Server Boot Order to set the boot order to boot from Local HDD.
3. Follow steps in Configure BIOS Parameters to set the LOM, HBA, and PCle slots to the following settings:

For servers based on UCS M4 boxes, set the following for BIOS parameters:

CDN Support for VIC—Disabled

PCI ROM CLP—Disabled

PCH SATA Mode—AHCI

All Onboard LOM Ports—Enabled
LOM Port 1 OptionROM—Disabled
LOM Port 2 OptionROM—Disabled
All PCle Slots OptionROM—Enabled
PCle Slot:1 OptionROM—Enabled
PCle Slot:2 OptionROM—Enabled
PCle Slot: MLOM OptionROM—Enabled
PCle Slot:HBA OptionROM—Enabled
PCle Slot:N1 OptionROM—Enabled
PCle Slot:N2 OptionROM—Enabled
PCle Slot:HBA Link Speed—GEN3

For servers based on UCS M5 boxes, set the following for BIOS parameters:

All Onboard LOM Ports—Enabled
LOM Port 1 OptionROM—Disabled
LOM Port 2 OptionROM—Disabled
PCle Slot:1 OptionROM—Enabled
PCle Slot:2 OptionROM—Enabled
MLOM OptionROM—Enabled
MRAID OptionROM—Enabled

Other parameters must be set to their default values.
4. To setup UCS M4 C-series pod with Intel 710 NIC:

a. Each C-series server must have two 4-port Intel 710 NIC cards.

b. Connect the ports A, B, and C for each Intel 710 NIC card to the respective ToR.

c. Enable the PCI slot with Intel NIC cards through the BIOS setting (BIOS > Configure BIOS > Advanced > LOM and PCI Slot
Configuration > All PCle Slots OptionROM-Enabled and enable respective slots).

d. Identify the slots by checking the slot-id information under the Network-Adapter tab listed under the Inventory link on the CIMC pane.

e. All the Intel NIC ports must be indicated in the BIOS summary page under the Actual Boot Order pane, as IBA 40G Slot xyza with

Device Type is

set to PXE.

BIOS

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/ucsscu/user/guide/30/UCS_SCU/bootraid.html
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/gui/config/guide/2-0/b_UCSM_GUI_Configuration_Guide_2_0/b_UCSM_GUI_Configuration_Guide_2_0_chapter_011100.html#task_B8ECD17A5606457CA72CAFD95D670FF1

For UCS M5, look for IBA 40G Slot under the BIOS Properties
MOS Properties

Runsing Vershon CIA0MS 3 1 2a 0 09181 FZ340

UEF| Beasrs oot

Actusl Boot Mods Legecy
Configured oot Mods Legacy -
Last Configured Bost Order Bource Gl
Comfigured Ors v oot device -
* Carfguret Boot Devss At Boot Divcas
[R T r—
* B Asverees N T L LR r—

S LA 400 St SO0 w104 T (Pt

—— s 8 Do DOPPCH FUAID Addaptesr (ecaed]

v
VEFT B £F) S (Mo ohoy TRagsr]

If the boot order for the Intel NICs is not listed as above, enable the PXE boot setting for each UCS-C M4 series server by using either
Intel's BootULtil tool on a pre-installed Linux system or boot a special ISO image. This is time consuming especially on a large pod with
many nodes. Hence, an automated tool is developed to help with this painstaking process.

1 From Cisco VIM 3.4.0, the above context is applicable only to UCS M4 series servers, as UCS-M5 is based on UEFI for boot.

While the pxe-boot tool simplifies the job of flashing the intel NIC cards, the restrictions of COSI compliance prevent us from shipping
third-party utility (from CIMC 4.0 onwards). Administrators must download the PREBOQOT.exe file from Intel website: https://downloadcent
er.intel.com/download/27539/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers

Version: 22.10

Date: 12/7/2017

OS Independent

Language: English

Size: 16.54 MB

MD5: ace485e8a3ef9039212f52b636ce48e3

PREBOOT.EXE

Ensure that there is unrestricted network access from Cisco VIM Management node to UCS-C series server's CIMC over following ports:

® TCP/2400 - serial-over-lan (SOL)
® TCP/22 - XMLAPI

Ensure that there is unrestricted network access from UCS-C series server's CIMC to Cisco VIM Management node's API interface over
following port:

* TCP/80- HTTP

This utility updates only the Intel PXE configuration and not the card's firmware or Option ROM.

Utility Details

Two scripts available in the Cisco VIM Installer's tools directory are:

® create-bootutil-img.sh
® intel-bootutil-update.py

Usage
[root@cologne-mgmt toolsl# ./create-bootutil-img.sh

Usage: ./create-bootutil-img.sh <PREBOOT.exe file> <output image names>

You can download PREBOOT .exe file from :

https://downloadcenter.intel.com/download/27862/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers

Version: 22.1

https://downloadcenter.intel.com/download/27539/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers
https://downloadcenter.intel.com/download/27539/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers
https://downloadcenter.intel.com/download/27539/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers
https://downloadcenter.intel.com/download/27862/Ethernet-Intel-Ethernet-Connections-Boot-Utility-Preboot-Images-and-EFI-Drivers

Date: 12/07/2017

OS Independent

Language: English

Size: 16.54 MB

MD5: ace485e8a3ef9039212f52b636ce48e3
PREBOOT.EXE

To toggle Intel PXE configuration on UCS C-series, use the script below:

[root@cologne-mgmt toolsl# ./intel-bootutil-update.py -h
usage: intel-bootutil-update.py [-h] [--hosts HOSTS]
[--exclude-hosts EXCLUDE_HOSTS] [-v] [-yl

--setupfile SETUPFILE --bootutil-image

BOOTUTIL_ IMAGE --port {0,1,2,3} --state

{enable,disable}

Details of the optional arguments for the intel-bootutil-update.py script are given below:

Optional Arguments Description
-h --help Displays the help with details of each argument of the script.
--hosts HOSTS Displays the list of servers for PXE configuration from the setup_data.yaml file.

--exclude-hosts EXCLUDE_HOSTS | Displays the list of servers to be excluded for PXE configuration from the setup_data.yaml file.
-v, --verbose Enables verbose output.

--setupfile SETUPFILE Specifies the setup_data.yaml file location.

--bootutil-image BOOTUTIL_IMAGE = Specifies the BootUtil image location.

--port {0,1,2,3} port # Specifies the port to be enabled.

--state {enable,disable} Enables or disables the PXE configuration.

Example to enable all port A:

/intel-bootutil-update.py --setupfile /root/openstack-configs/setup_data.yaml
--bootutil-image /root/bootutil.img --port 0 --state enable

Example to enable all port A and B:

./intel-bootutil-update.py --setupfile /root/openstack-configs/setup data.yaml
--bootutil-image /root/bootutil.img --port 0 --port 1 --state enable

Example to disable all port C:

./intel-bootutil-update.py --setupfile /root/openstack-configs/setup data.yaml
--bootutil-image /root/bootutil.img --port 2 --state disable

Workflow:
Multiple scripts are required as Intel's PREBOOT.exe utility is not packaged with Cisco VIM for COSI compliance:
1. Download PREBOOT.exe version (listed above) from Intel's website.
2. Go to Cisco VIM Installer's tools directory.
3. Run create-bootutil.img script to create a CIMC-KVM mountable USB image.
4. Run intel-bootutil-update.py script to configure Intel NIC for enabling or disabling PXE.

Utility Examples:

[root@cologne-mgmt installer]# cd tools
[root@cologne-mgmt tools]#
[root@cologne-mgmt toolsl# ./create-bootutil-img.sh

Usage: ./create-bootutil-img.sh <PREBOOT.exe file> <output image names>

[root@cologne-mgmt tools]#
[root@cologne-mgmt toolsl# ./create-bootutil-img.sh /root/PREBOOT.exe /root/bootutil.img

Unmounting temporary mount point /tmp/tmp bootutil.img
Cleaning up temporary workspaces

Successfully created image file with BOOTUTIL64E.EFI
-rw-r--r--. 1 root root 5.0M Jul 20 17:52 /root/bootutil.img

[root@cologne-mgmt tools]#
[root@cologne-mgmt toolsl# ./intel-bootutil-update.py --setupfile /root/openstack-configs/setup_data.yaml --
bootutil-image /root/bootutil.img --port 0 --state enable

All servers will be rebooted as part of PXE configuration, would you like to continue? <y|n> y
2018-07-18 18:34:36,697 INFO Enabling temporary HTTP server hosting BootUtil.img on 172.29.86.10
2018-07-18 18:34:36,790 INFO Successfully enabled temporary HTTP server hosting BootUtil.img on 172.29.86.10

2018-07-18 18:40:28,711 INFO Disabling temporary HTTP server hosting BootUtil.img on 172.29.86.10

2018-07-18 18:40:28,810 INFO Successfully disabled temporary HTTP server hosting BootUtil.img on 172.29.86.10
Server (s) successfully updated PXE configuration:
cologne-control-1,cologne-control-3,cologne-control-2,cologne-compute-1,cologne-compute-2,cologne-storage-1,
cologne-storage-3,cologne-storage-2

[root@cologne-mgmt tools]#

Out-of-Band Management Switch
Configuring Out-of-Band Management Switch

For Cisco VIM installer APl and SSH bonded interface, use 1-GB Intel NICs that connect the Cisco NFVI management node and Cisco Catalyst switch.
Following is a sample configuration for creating a port channel on a Catalyst switch. Modify the configuration for your environment:

interface GigabitEthernet0/39
channel-group 2 mode active speed 1000

interface GigabitEthernet0/40
channel-group 2 mode active speed 1000

interface Port-channel2 switchport
access vlan 165 switchport mode access

Third-Party Compute Support
Support of Third-Party Compute

® Qverview

® HP DL 360 Gen9/Gen10

® Dell PowerEdge R740/R640
Overview

Cisco VIM supports selected third-party computes from HPE and Dell in an environment where the controller and Ceph nodes are based out of Cisco
UCS. Though Cisco VIM supports full automation, it does not have the redistribution license of utility tool to manage the third-party hardware.

HP DL 360 Gen9/Gen10

For Cisco VIM to manage HP DL360 Gen9/Gen10 as computes, download the Smart Storage Administrator CLI (ssacli) tool directly from HPE website and
place the RPM file in /root/installer-<tagid>/openstack-configs/ directory.

1 Cisco VIM supports ssacli-4.17-6.0.x86_64.rpm

The location of the target RPM is available at: https://downloads.linux.hpe.com/SDR/repo/mcp/centos/7/x86_64/current/ssacli-4.17-6.0.x86_64.rpm
The checksum of the target RPM is available at:

SHA1 checksum: d30b81277671179e2c3ea8fe5¢c1aaeaaed2efble

Dell PowerEdge R740/R640

For Cisco VIM to manage Dell PowerEdge R740/R640 as computes, download the PowerEdge RAID Controller (PERC) CLI utility directly from Dell
website and place the RPM file in /root/installer-<tagid>/openstack-configs/ directory.

1 Cisco VIM supports perccli-007.1020.0000.0000-1.noarch.rpm
The location of the target RPM is available at: https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=wd0r5

The checksum of the target RPM is available at:

SHA1 checksum: d36124979d144dfc800f6be5726b74c6451acd6e

https://downloads.linux.hpe.com/SDR/repo/mcp/centos/7/x86_64/current/
https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=wd0r5

Centralizing Management Node

Centralizing Management Node

Assumptions/Best practice

Support Matrix

DHCP Relay Configuration for UCS-based Pods
Add Target Compute(s) to AZ for Management Node VMs (Optional)
Workflow/Usage

Typical VM Flavor

Execution of Deployment Orchestration

Tooling Usage

Launching Resources

Management Node VM Removal

Management Node VM and Resource Status
Central VM Management Result

Accessing Management Node VMs

Setup Data Changes for Management Node VM
Additional Setting for Quanta BMC

Management Node VM optimization for Nano Pod

For architectural information, see Management Node Centralization

Assumptions/Best practice

To achieve centralization of the management node, the following assumptions are made:

1.
2.
3.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

The QCOW2 generated by Cisco VIM release must be used as a management node VM.

There is a one-to-one relationship between the management node VM and target pod.

As the management node VMs are curated to manage Cisco VIM pods, a fully automated orchestration (backed with RestAPI) is provided to
manage the same.

. The management node VMs can only be hosted on a Cisco VIM based cloud with pod type as micro, fullon, UMHC, or NGENAHC. Careful

planning of storage must be made on the pod that hosts the management node VMs. This hosting pod typically requires a physical management
node to be managed.

. The management node VMs can manage micro, fullon, UMHC, NGENAHC, or edge pod. For micro, UMHC, or NGENAHC pod hosting the virtual

Cisco VIM management node, the following restrictions apply:
a. The setup_data must run with CEPH_OSD_RESERVED_PCORES: 6

b. The setup_data must run with cinder_percentage_data of 80 or more in CEPH_PG_INFO. This is a Day 0 configuration.

. The management node VMs can also be hosted on pods where Cinder is supported via Zadara, SolidFire, or multi-backend ceph. For multi-

backend ceph, by default, the VMs are booted off volumes created on SSDs. For SolidFire, SSD, and HDD, the volume types with the names cent
ral_mgmt_solidfire, central_mgmt_ceph_ssd, and central_mgmt_ceph_hdd respectively are reserved by the system, and not to be used
elsewhere in the cloud.

For all types of pods hosting the virtual Cisco VIM management nodes, NOVA_RAM_ALLOCATION_RATIO must be 1.0 globally or on a per
compute basis for all the computes belonging to Availability Zone (AZ) defined in CENTRAL_MGMT_AZ of the setup_data.CentralMgmt.yam|

. Host the VMs on compute where NOVA_CPU_ALLOCATION_RATIO is set to 1.0, to avoid resource contention.
. For the pod hosting the virtual Cisco VIM management nodes, the corresponding VMs are hosted in a project called central_mgmt, so that CVIM

MON can monitor these nodes as special resources. The project central_mgmt is created automatically via the Cisco VIM orchestrator that
handles the management node VMs.

If the cloud is sharing workloads with other VNFs, it is recommended to add at least one compute node to the host aggregate created by the cloud
admin. This is an optional manual step which helps to streamline the operation. The entry of CENTRAL_MGMT_AGGREGATE in the setup_data.
CentralMgmt.yaml reflects the name of the host aggregate which hosts the management node VMs. With this approach, the cloud administrator
can add more computes to the AZ as needed. For details on adding computes, see Add Target Compute(s) to AZ for Management Node VMs
Admin must allocate a minimum of two routable networks for the management network (br_mgmt) and API network (br_api) of the VMs. When
the VM is a Cisco VIM software hub, the two routable networks are br_public and br_private. For UM, only the API network (br_api) is used by the
VM.

File system access to the public key that is imported during VM deployment is needed.

For managing the lifecycle of the management node VMs, all associated cloud resources are defined in a setup_data, example of which is
available at /root/openstack-configs/setup_data.CentralMgmt.yaml.

If cloud is running with HugePages, the management node VMs are automatically launched using HugePages. It is assumed that all computes
hosting the management node VMs have the same HugePage size and percentage.

Given the criticality of the management node, ensure that CVIMMON is enabled on the cloud hosting the management node VMs and pods
managed by the management node VMs.

The pod managed by centralized VM, needs to run off a central CVIM-MON infrastructure. Only local CVIM-MON must be used as a transition
phase to ensure optimal usage of system resources.

The NFVBench is not supported in the deployment of central management VMs.

Provider networks belonging to VMTP section must not be used for creating central management VMs networks.

After the launch of central management VMs, the administrator must not forget to take a manual backup of the management node and copy the
snapshot to another server.

The VM usage is supported for management node, Unified Management node, and Cisco VIM software hub.

Support Matrix

In Cisco VIM 3.4.3, management node VMs can be used to drive the following:

Pod Management BMC User and Network Requirements
Hardware Network
Type
Quanta servers | v6/v4 BMC user needs to have Admin, KVM, and VMedia access privileges.

Layer 3 connectivity from management node VM to pod management network. v6 network must be routable.

Cisco UCS C- v6/v4 or v4 Layer 3 connectivity from management node VM to pod management network. v4 network must be routable.

series
Need to identify the management subnets and configure the DHCP relays on the ToRs attached to the target

Cisco VIM OpenStack cloud.

The DHCP IP relay address points to the management VM's br_mgmt interface (over v4), which serves the
DHCP requests for the cloud hosts via cobbler.

DHCP Relay Configuration for UCS-based Pods

F13_N93180_1# show run dhcp

!Command: show running-config dhcp
IRunning configuration last done at: Tue Sep 3 12:17:01 2019
!Time: Tue Sep 3 12:17:18 2019

version 9.2 (1) Bios:version 07.64
feature dhcp

service dhcp
ip dhcp relay
ipvée dhcp relay

interface Vlan<ids> --> Target Pod's management network

ip address <a.b.c.d
/mask> --> SVI address
for VLAN 1228

ip dhcp relay address <br mgmt_v4 addr of Management node VM> --> Management node VM's br mgmt IPv4
address

Add the necessary routing on the ToRs, so that the management node VM's gateway is reachable from the ToR.

Add Target Compute(s) to AZ for Management Node VMs (Optional)

If the cloud is sharing workloads with other VNFs, it is recommended to have target compute nodes for management node VMs. To achieve that, the cloud
administrator must create a host aggregate. This is a manual step which helps to streamline the operation. The entry of CENTRAL_MGMT_AGGREGATE
in the setup_data.CentralMgmt.yaml reflects the name of the host aggregate which hosts the management node VMs. With this approach, cloud
administrator can add more computes to the AZ as needed.

cd /root/installer-xxx/openstack-configs
source openrc

Fetch Hypervisor List
openstack hypervisor list

Create Availability Zone for Central Management VM

openstack aggregate create <target az name> # Should match the value of CENTRAL MGMT AZ defined
in setup_data for Central VM management
openstack aggregate set --zone <target_az_name>_az <target_az name> # while the Zone name can be different

from the availability zone setting, it is recommended to append " az" to the name to set the AZ for operation
ease

Add hypervisor to the AZ, one at a time
openstack aggregate add host <target_az name> <hypervisor namels>
openstack aggregate add host <target az name> <hypervisor name2>

Check output of Availability Zone for Central Management VM
openstack aggregate show <target_az_name>

Workflow/Usage

1. You must download the QCOW2 image from the release link onto the right directory of the management node of the cloud hosting the
management node VMs. For example,

cd to <dir_ for gcow2_ image>
curl -o cvim-image-NNNN.gcow2 https://cvim-registry.com/mercury-releases/cvim34-rhel7-ospl3/releases
/<target-release>/buildnode-<release>.gcow2

2. For Cisco VIM Software Hub based installation, use the following:

cd to <dir for gcow2_ image>
curl -o cvim-image-NNNN.gcow2 https://<sds-registry-host>/mercury-releases/cvim34-rhel7-ospl3/releases
/<target-release>/buildnode-<release>.gcow2

3. Create the setup_data.CentralMgmt.yaml by defining required resources to be created on the host pod.
The following resources must be defined based on the information in setup_data.CentralMgmt.yam!:

Provide username/password for the OpenStack project of central_mgmt.

Provider network and subnets for APl and management network segments.

Security group and rules.

Glance image for the CVIM QCOW?2 image.

Flavor specification.

Keypair to import.

VOLUME_BACKEND: To indicate the target device type (SSD or HDD) to boot off in a multi-backend ceph. If not defined, system
defaults to SSD for creation of volumes.

® Servers and the corresponding network ports and bootable volume for the source image.

1 Following are the recommended best practices:

® Use a host aggregate, so that computes dedicated for management node VMs are placed in it.
® Define the timezone at a global or per sever level.
® Define the cvimadmin_password_hash for console access to the management node at a global or per sever level.

Typical VM Flavor

With the characterization done so far, ensure that the management node VM contain 8 vCPUs, 25G RAM, and 1 TB HDD. Ensure that the management
node VMs are run without oversubscription of CPU and memory, so that the management node resources are available all the time. In this regard, the
choice of CPU and memory of the compute hosting the management node VM must be made, after calculating the number of management node VMs
(consuming 8 vCPUs, 25G memory) that needs to be hosted without oversubscription.

Listed below is the corresponding flavor name:

- name: 'cvim-mgmt.8x24-nonlocal'
ram: 24576
vcpus: 8
disk: 1024

Careful planning of memory is required, as the servers hosting the management node VMs cannot run with memory oversubscription, to ensure system
stability.

Listed below is a sample of the setup_data.CentralMgmt.yaml, where all the target resources are defined:

#

This is an example file for Centralizing the management node. It assumes that each of the management node is
running a VM in a cloud powered by Cisco VIM. There is a cloud # image that is released as part of the
artifacts used to get it going

#

PODTYPE: MGMT_CENTRAL

CENTRAL_MGMT_USER_INFO:
username: <userrnames
password: <password>

TIMEZONE: <entry as defined in TZ database name or notes of https://en.wikipedia.org/wiki
/List_of tz database_time_zonesx>

Optional; the local value at a per server level overrides the global value;

if local or global is not defined, it will take the timezone of the management
node that is hosting the VMs.

List of network segments, min of 2

NETWORKS :

- segment: management # can be either management or api
vlan_id: <unique vlan_id part of provider networks>
name: <unique name of the networks>
subnets:

- name: <unique name of the v4 subnet>
network_cidr: a.b.c.d/mask
gateway: X.y.X.w

range: ['e.f.g.h', 'i.j.k.1'] # Start and End IP range to launch VM off
ip_version: 4
dns_nameservers: ['v4_dns_server'] # list of v4 DNS servers; max of 3
- name: <unique name of the v6 subnet> # Optional only needed if v6 is there
network cidr: '<cidr_in_vé with mask>' # cidr in vé
gateway: '<gateway in vé6>' # gateway in vé
range: ['start ipvé_address', 'end ipvé_address'] # Start and End IP range to launch VM off
ip version: 6
dns_nameservers: ['v6 _dns server list'] # list of v6 DNS servers; max of 3

- segment: api # can be either management or api
vlan_id: <unique vlan_id part of provider networks>
name: prov-net-api-2001

subnets:
- name: <unique name of the networks
network cidr: e.g.f.h/mask # Unique CIDR
gateway: p.q.r.s # Corresponding Gateway
range: ['e.f.g.d', 'i.t.k.1'] # Start and End IP range to launch VM off
ip_version: 4
dns_nameservers: [v4_dns_server] # list of v4 DNS servers; max of 3
- name: <unique name of the v6 subnet> # Optional only needed if vé6 is there
network cidr: '<cidr_in vé with mask>' # cidr in vé
gateway: '<gateway in vé6>' # gateway in vé
range: ['start ipvé_address', 'end ipvé_address'] # Start and End IP range to launch VM off
ip version: 6
dns_nameservers: ['vé6 _dns server list'] # list of v6 DNS servers; max of 3

List of Images for Management Node, min of 1

IMAGES:

- name: <unique_image_ name> # Unique name of images
file location: '<gcow_ image paths>'

Flavor info for Management Node, min of 1 info
FLAVORS:
- name: '<unique_flavor_name>' # Unique name of flavor
ram: <4096 to 200000>
vcpus: <4 to 20>
disk: <512 to 8192> # Optional, but must be mutually exclusive for disk vol_size on a per server
basis, between disk and disk_vol_size one of them has to be defined

List of Keypairs for Management Node, min of 1

KEYPAIRS:

- name: mgmt_vm keypair # Unique Name of KEYPAIRS
public_key file: '/root/.ssh/id_rsa.pub'

#CVIMADMIN PASSWORD_HASH should be the output from:

python -c 'import crypt; print crypt.crypt("<plaintext strong password>")'

username is: cvimadmin

#CVIMADMIN PASSWORD HASH: <Please generate the admin pwd hash using the step above; verify if the output starts
with $6>

Optional, mechanism to group computes dedicated for Virtual Management Node into one host aggregate
CENTRAL_MGMT AGGREGATE: <Name of Host Aggregator> # Admin has to add the computes to the host aggregator named
here

Optional, only allowed when Ceph is multi-backend (HDD and SSD based); if not defined SSD will be used to
create volume in a multi-backend environment. Also, for the entire system there is an uniform backend
#VOLUME_BACKEND: <SSD or HDD>

List of Management Node in VM, min of 1
SERVERS_IN_VMS:
- name: <unique name of servers in VM>
keypair: mgmt vm keypair # Keypair name that is defined under KEYAPAIR/name
image: <unique_image name> # image name that is defined under IMAGES/name
flavor: '<unique_ flavor_name>' # flavor name that is defined under FLAVORS/name
disk vol size: <512 to 8192> # integer, value in Gig, min of 512, max of 8192 Gig; optional but need to be
mutually exclusive for the relevant flavor, between disk and disk vol size one of them has to be defined
node_type: <management or um or sds>
domain name: <your.domain.com> # optional
timezone: <<entry as defined in TZ database name or notes of https://en.wikipedia.org/wiki
/List_of tz database time zones>
Optional; the local value at a per server level overrides the global value;
if local or global is not defined it will take the timezone of the
management node that is hosting the VMs

cvimadmin_password_hash: <Generate the admin pwd hash using the step above; verify if the output starts with
$6>
Optional if defined globally; refer to the CVIMADMIN_ PASSWORD HASH section on how
to generate the password;
username is: cvimadmin

nics: # entry of 2 Items for node type management or sds, entry of 1 is when node type is

- name: <unique_nic_name_across_all_vms> # For br_mgmt
Should Match Provider Network Name

+

network_name: prov-net-mgmt-2000
fixed ips:
- subnet: v4_mgmt_subnet
ipaddress: <ipv4_address>
- subnet: v6_mgmt_ subnet
ipaddress: '<ipvé6_address>'
- name: <unique_nic_name_across_all_vms>
network name: prov-net-api-2001
fixed ips:

IPv4 subnet network name

IPV4 address belonging to v4_mgmt_subnet
IPv6 subnet network name

IPV6 address belonging to v6_mgmt_subnet
for br_api

Should Match Provider Network Name

H* FH o HF H I

+*

- subnet: v4_ api subnet IPv4 subnet network name

ipaddress: <ipv4_address> # IPV4 address belonging to v4_api_subnet

- subnet: v6_api_subnet # IPv6 subnet network name
ipaddress: '<ipvé6_address>' # IPV6 address belonging to v6_api_subnet

Execution of Deployment Orchestration

® Create the right host aggregate for the management node VMs and assign the right set of computes (Optional and API driven process).
® Update the target CentalManagement setup_data with the relevant VM information to spawn the management node VMs.
® Execute the ciscovim CLI to launch one or more VMs

Tooling Usage

[root@cvim-mgmt ~]# ciscovim help central-vm
usage: ciscovim central-vm [--vms <vm namel,vm namel, ...>]
[--file <setup data central vm.yaml>] [-y]

<launch-all|clean-all|add-vms|delete-vms|list-vms|result|join>
Central Management VM Commands

Positional arguments:
<launch-all|clean-all|add-vms|delete-vms|list-vms|result|join>
The Command to Perform for Central VM
Management

Optional arguments:
--vms <vm_namel,vm_namel, ...> Comma separated list of VM names
--file <setup_data_ central vm.yaml>
Provide a valid 'setup_data_central vm.yaml'
file
-y, --yes Yes option to perform the action

Launching Resources

To launch resources defined in setup_data.CentralMgmt.yaml, use the below command:

To launch Central VMs for the first time
ciscovim central-vm launch-all --file <target_setup data> [-y]

To add VMs later
ciscovim central-vm add-vms --file <target setup data> --vms <, separated vms> [-y] # In the target
setup_data, the target VMs are present in the SERVERS_IN_VMS section

Management Node VM Removal

To remove a specific or all management node VMs, use the following command:

To delete all Central VMs
ciscovim central-vm clean-all --file <target_setup data> [-y] # In the target setup_data the section
SERVERS_IN_VMS should be absent

To delete specific VMs
ciscovim central-vm delete-vms --file <target_setup data> --vms <, separated vms> [-y] # In the target
setup_data the target VMs are absent in the SERVERS_IN VMS section

Once the VM comes up, in case of management node, it contains all the artifacts for ciscovim client and mercury-restapi installed and running. Depending
on the node_type, the network interfaces are appropriately configured.

As the VM password management is not handled by this workflow deployment, the operator must login using the sshkey and then change the password in
the VM.

1 After launch of central management VMs, the administrator must not forget to take a manual backup of the management node and copy the
snapshot to another server.

Management Node VM and Resource Status

To list the status of the management node VMs and the resources available to launch additional management node VMs, use the following command:

To list all Central VMs
ciscovim central-vm list-vms [-y]

The output lists the summary of management node VMs, their status and the interface IP addresses. Also, it lists the total number of VMs currently running
and the resources such as compute, vVCPU, RAM, and storage available to launch additional management node VMs.

Central VM Management Result

To view the last result of the run, execute the following:

To list all Central VMs
ciscovim central-vm result [-y]

Accessing Management Node VMs
If the management node VM is in Active state, some additional Cisco VIM services are available automatically. SSH to management node is not allowed

while availing the additional Cisco VIM services. To check if all the services are up and ssh is allowed, execute the following openstack command as a
cloud admin:

source /root/openstack-configs/central mgmt.openrc

To check if VM is ready for SSH access

nova console-log <vm name> | grep -o 'CVIM RestAPI install completed'

or

openstack console log show <vm _name> | grep -o 'CVIM RestAPI install completed'

Once the VM is ready for SSH access, you can set up the management node VM login in one of the following ways:
1. From the management node of the cloud hosting the VM, you can SSH to the VM and set the password via Linux passwd mechanism for access.

2. Log into the VM as root user, using the private ssh key corresponding to the public key that is provided as part of the KEYPAIRS entry in /root
/openstack-configs/setup_data.CentralMgmt.yami.

1" Only the cvimadmin user whose password is defined by: CVIMADMIN_PASSWORD_HASH, have console access, and not the remote
user. Attempting to login with this user with SSH will not work.

After launch of central management VMs, the administrator must take a manual backup of the management node and copy the snapshot to
another server.

Setup Data Changes for Management Node VM

To support the installation of management node VM over Layer 3, use the following command:

NETWORKING:

domain_name: <domain_name>
domain_name_servers: [dns_name_server list]

Optional, only allowed when the management node is centralized.
need info of br_mgmt of the Centralized Management Node, IPV6 info is needed for dual stack environment
remote management:
gateway: <ipv4 gateway>
ipv6_gateway: '<ipvé_gateway>'
ipvé6 subnet: '<ipvé subnet with cidrs'
subnet: <ipv4_subnet_with_cidr>

networks:

- gateway: <v4_gateway>
ipvé _gateway: <v6_gateway>
ipvé_pool: [v6_pool_ range]
ipv6_subnet: <v6_subnet cidr>
pool: [v4 pool rangel
segments: [management, provision]
subnet: <v4_subnet_cidr>
vlan_id: <management vlan id>

The pod's provision and management traffic continue to flow between management node VM’s br_mgmt and OpenStack node’s br_mgmt/mx interface, but
over Layer 3. Since the management node is running in a VM, a faster log rotation within the VM is defaulted. It is recommended to configure the
management node VMs with external syslog server, to ensure that you have access to all the necessary logs.

Additional Setting for Quanta BMC

For the central management VM feature to work, the BMC user must have Admin, KVM, and VMedia access privileges as depicted below. To enable it,
execute the following:

1. Navigate to each of the Quanta BMC Web UI.
2. In the Ul, choose Settings > User Management > <User account>
3. Verify whether Enable User Access (as Administrator), KVM Access, and VMedia Access options are selected:

User Management Canfipuration

Lharnums

Ehadge Fas s

Prizwerd b v
Faiaward

Cenfirm Fauwesd

n Trahis Lhar Aoied
Pirtweni Proaiimps

oM Rows

E Vel g Ariavs -‘_

Liyidiyg] Rooans

Management Node VM optimization for Nano Pod

As the cloud gets deployed at the far-edge, there is an evolution of its footprint towards an offering where a single box hosts the entire workload. The
cloud hosted off a single node called nano pod that has both control and compute functionality, with no persistent storage and with no scope for expansion.
When a nano pod is managed by a virtual management node that is Layer 3 distance away from itself, an optimization to reduce the persistent storage
required by the virtual management node to a minimum of 256G is done. For such design optimizations, following are the assumptions set when using the
CENTRAL_REGISTRY option in the setup_data for the nano pod:

® Cisco VIM Software hub is always reachable from the management node and the nano pod continues with Cisco VIM installation, software
update, and reconfiguration activities.

Cisco VIM Software hub has the correct image tags for the pods running off.

External syslog server is enabled on the management node VM to conserve the storage used.

Management node VMs (consuming 8 vCPUs, 25G memory and 256G disk space) are running with no CPU or memory oversubscription.
Since there is no HA in a nano pod deployment, the docker registry gets populated with the right containers, and the control and data plane
outage happens during reconfiguration and software update.

To avail this feature, update the setup_data of the management node VM driving nano pod installation on Day 0 as given below:

HHH R R
Registry credentials
HHE## AR R R R
REGISTRY _NAME: '<registry name>' # Mandatory parameter, when SDS is enabled or Central Registry is enabled.
Example registry FQDN name (your.domain.com) .
When SDS or Central registry is not enabled, this parameter is not needed
REGISTRY_USERNAME: '<username>'
REGISTRY_PASSWORD: '<passwords>'
REGISTRY_EMAIL: '<email@address.com>'

Below one is Optional parameter for central registry. This parameter supports only nano pod installation.
CENTRAL REGISTRY: Enabled

CVIM Monitor and Inventory Service Configuration
CVIM Monitor and Inventory Service Configuration

® Overview of CVIM Monitor
® Enabling CVIM-MON on Cisco VIM
® Monitoring External Servers Using CVIM-MON
® Assumptions for Monitoring External Servers Using CVIM-MON
® |nstallation Procedure for Monitoring External Servers Using CVIM-MON Local
® Uninstallation Procedure for Monitoring External Servers Using CVIM-MON Local
® |Installation Procedure for Monitoring External Servers Using CVIM-MON Central
® Uninstallation Procedure for Monitoring External Servers Using CVIM-MON Central
® Enabling CVIM-MON Post Pod Installation
CVIM-MON Grafana/Prometheus and AlertManager with LDAP Backend

Overview of CVIM Monitor

The Cisco VIM Monitor feature (CVIM-MON) provides a comprehensive solution for monitoring the health and for tracking the usage of resources in the
Cisco VIM pod infrastructure. This solution is available as a configuration option and provides the following services:

Infrastructure-level metric collection from all nodes in the pod

Metric aggregation into a time-series database (TSDB)

Rule-based alerting engine integrated with the TSDB

Web Ul with with pre-defined dashboards customized for Cisco VIM

REST API to query the TSDB

REST API to query and silence alerts

Alert notifications using SNMP traps or alternate alert notification protocols
User-configurable alerting rules

User-configurable web Ul dashboards

The software components that provide the CVIM-MON service is called a CVIM-MON stack. The default deployment mode for CVIM-MON is to deploy the
CVIM-MON stack on the pod management node.

The size of the TSDB depends on the frequency of the polling (configurable) and the number of
compute nodes. By default, the metrics collected in each management node are kept for 15 days.

Enabling CVIM-MON on Cisco VIM

You can enable CVIM-MON on an existing pod that is installed with Cisco VIM 3.0.0 or later, through the reconfigure option by extending the setup_data.
yaml file with relevant information.

The components of CVIM-MON are as follows:

CVIM_MON: Provides the base functionality of monitoring and KPIs.

SNMP: Enables sending CVIM-MON alerts as SNMP traps, only if CVIM-MON is enabled.

SERVER_MON: Enables collecting UCS-C bare metal alerts into CVIM-MON for Cisco UCS C-series servers.
MANAGEMENT_SERVERS: Enables collecting UCS-C bare metal alerts of external UCS servers, for example, management node.
SERVER_MON is a prerequisite for this option.

To enable CVIM-MON, the CVIM_MON and PODNAME keys must be added to the setup_data.yaml file.
The CVIM_MON key has the following properties:
® enabled: A boolean value indicating whether CVIM-MON is enabled.
® polling_intervals: A dictionary defining the interval of metrics sampling. If not defined, default values are used.
® ui_access: A boolean indicating whether CVIM-MON Ul access is enabled or not. By default, it is enabled.
PODNAME is mandatory for CVIM-MON and is a name that identifies uniquely each CVIM pod.
SNMP traps can be enabled using the SNMP key with the following attributes:
® enabled: A boolean value indicating whether SNMP is enabled. CVIM_MON must also be enabled.

® managers: A list of SNMPv2 or SNMPv3 managers to send the SNMP traps. For SNMPv2, community and port can be set. For SNMPv3, the Engi
ne_id and list of users must be specified, where the Engine_id is the EngineContextID used to send trap of the SNMP manager.

1 SNMP traps are sent without setting any authentication or secure engine_id for the user.

The following table shows the list of properties with their default values and description:

Property
Group
and
Name

PODNAME:
CVIM_MON:
enabled
CVIM_MON:
ui_access
CVIM_MON:
external_ser
vers

CVIM_MON:

polling_inter
vals:

high_freque
ncy:

SNMP:
enabled
SNMP:
managers:
address
port
version
community
SNMP:
managers:

users:

engine_id

name
auth_key
authenticati
on
privacy_key
encryption
SERVER_M
ON: enabled

host_info:

rsyslog_sev
erity

MANAGEM
ENT_SERV
ERS:

Values

<string>

truelfalse

truelfalse

List of external server
IPs (v4 or v6) that must
be monitored by CVIM
MON

10s to 10m

truelfalse

<ipv4 or ipv6>
1-65535
v2c|v3

<string>

<hexadecimal string>

<string>

<string>

SHA|MD5

<str>

'AES128''AES192''AES
256'

true|false

‘ALL’ or list of servers
specified in SERVERS
and
MANAGEMENT_SERVE
RS section

emergency | alert| critical

| error| warning| notice|
informational | debug

server list

Default
Value

(required)

false

true

15s

false

(required)
162
v2c

public

(required
v3)

(required
v3)

(required
v3)
SHA

(auth_key)
'AES128'

false

‘ALL

(Optional)

(Optional)

Description

Must be provided for identifying each pod when CVIM_MON is enabled.
A boolean indicating whether CVIM-MON is enabled or not.
Set to True to enable CVIM_MON.

A boolean indicating whether CVIM-MON Ul access is enabled or not.

Optional. For more information, see Monitoring External Servers Using CVIM-MON

Metric collection sampling interval in seconds or minutes.

It is recommended to set to 1m in production deployments.

A Boolean indicating whether CVIM-Trap is enabled or not.
If true, CVIM_MON:enabled must also be set to true.

A list of up to three SNMP managers to send traps.

Denotes the IPv4 or IPv6 address of the SNMP manager.
Optional, port to send traps.

Indicates the SNMP manager version.

Used for SNMPv2c.

Required for SNMPv3, up to three users.

Uniquely identifies the SNMP engines and entities. The SNMP engine IDs are composed of 5 to 12 octets and
have no standard display format. It must be a hexadecimal string and cannot have all zeros or all 255s ("ff").
RFC 3411 specifies that the engine can be formatted with IPv4, IPv6, MAC address, text, and octets (and must
start with 8). Listed below is a summary of the constraints.

ContextEngineld is unique across all managers.

Minimum length is 5 and maximum length is 32.

All cannot be 00s or FFs, and must start with 80.

Indicates the user name.

Indicates the authorization password. Must contain at least eight characters.

Specifies the authentication protocol.

Encryption key

Encryption protocol

Enable SNMP traps for CIMC faults (UCS C-series only)

Specifies the UCS-C servers to be monitored.

Specifies the minimum severity from the UCS C-server logs that are to be sent to remote syslog servers

Enables collection of UCS-C bare metal alerts of external UCS servers, for example, management node. See
example below on the entry details for this key

1 If SERVER_MON.rsyslog_severity is configured, you must configure SYSLOG_EXPORT_SETTINGS as well to indicate the remote syslog
servers to send the logs.

Example of setup_data.yaml section related to CVIM-MON (not all possible optional values are represented):

CVIM_MON:
enabled: true
polling intervals:
high frequency: 1m

SNMP :

enabled: true
managers:

- address: 10.10.10.54

SERVER_MON :
enabled: true
host_info:
- ALL
rsyslog_severity: error

MANAGEMENT_SERVERS: # Optional for monitoring CIMC of management node or external servers via SNMP (one or

more external servers); SERVER MON must be enabled for this option
<hostname>:
cimc_info: {cimc_ip: <ip address>, [cimc_username: <uname>, cimc password: <passwords]} #cimc username and

cimc_password defined in CIMC-COMMON are used, if not
defined locally
<hostname_2>:
cimc_info: {cimc_ip: <ip address>}

Monitoring External Servers Using CVIM-MON

CVIM-MON can monitor external non-CVIM servers running RHEL or CentOS 8.2. CVIM-MON monitors these servers by installing a Telegraf agent on
them to collect bare metal and libvirt metrics. The telegraf agent runs as a new systemctl service and collects metrics from the local server. These metrics
are available for a remote scraper on port 9273.

Assumptions for Monitoring External Servers Using CVIM-MON
The following are the assumptions and prerequisites associated with this feature:

The external servers must be reachable from the management node from the local or central CVIM-MON deployments.

The external servers must run on UCS M4 or M5 hardware similar to the Cisco VIM management node BOM.

The external servers must run Cisco VIM management node ISO or CentOS 8.2.

The external nodes must run on the same site as the monitoring Cisco VIM pod. The scraping of metrics occurs over unauthenticated and
unencrypted HTTP connections on port 9273.

® Cisco VIM artifacts of Unified Management and Cisco VIM software hub can be monitored via CVIMMON local or central installation.

Installation Procedure for Monitoring External Servers Using CVIM-MON Local

To enable monitoring of external servers using CVIM-MON, you must update the setup_data.yaml file with the details of the external_servers, and run
fresh installation or reconfiguration in the Cisco VIM pod. As part of the fresh installation or reconfiguration, an external-monitoring-<telegraf version>.tar.gz
tar file is created in the management node at /opt/cisco/cvim_mon.

An example of a setup data file with CVIM-MON external server monitoring capabilities:

CVIM MON:
enabled: true
external_servers: [<ipv4_address>, <ipvé6_address>]

Note: IPv6 address is only supported when CVIM is running IPv6

To enable monitoring of the external servers using CVIM-MON, you must execute the following steps on each of the target external servers:

1. Copy the external-monitoring-<telegraf version>.tar.gz file from the management node of the Cisco VIM pod to root directory in the external server.

2. Open port 9273 on the respective external server (as per the IP defined in the Cisco VIM pod) to allow communication between Prometheus on
the management node and the Telegraf agent on the server.
3. Untar the external-monitoring-<telegraf version>.tar.gz tar file to extract the following files:

File Description
external.conf Provides the Telegraf configuration.
telegraf<version>.x86_64.rpm Installs Telegraf on the server.
monitor_external.sh Deploys Telegraf on the external server.

monitor_external_unbootstrap.sh | Removes Telegraf agent and corresponding configurations on the external server

ext_docker.conf Docker container Telegraf plugin.

ext_ipmi.conf IPMI Telegraf plugin

ext_libvirt.conf Libvirt VM Telegraf plugin.

um_x509_cert.conf Unified Management node x509_cert Telegraf plugin.
um_http_response.conf Unified Management node HTTP response Telegraf plugin.
sds_http_response.conf Software Delivery Server HTTP response Telegraf plugin
sds_x509_cert.conf Software Delivery Server x509_cert Telegraf plugin

4. To deploy Telegraf on the external server, run the monitor_external bash script in privileged mode. This script will be found in the directory (extern
al-monitoring-xxx) created as a result of untarring external-monitoring-<telegraf version>.tar.gz in the external server targeted for monitoring.

#sudo ./monitor external.sh

If the script runs successfully, Success: Telegraf installation succeeded message appears on the console screen. You can now access either
the local or central Prometheus or Grafana, and monitor the external server.

Uninstallation Procedure for Monitoring External Servers Using CVIM-MON Local

To remove the Telegraf agent and related configuration on the external server, go to the directory (external-monitoring-xxx) created as a result of untarring
external-monitoring-<telegraf version>.tar.gz in the external server targeted for monitoring, and execute the following:

#sudo ./monitor external_unbootstrap.sh

1 Do not forget to take out the corresponding IP Address from the external_servers information in CVIM_MON section of the pod, and run a
reconfigure operation to avoid false alerts.

Installation Procedure for Monitoring External Servers Using CVIM-MON Central

Obtain the external-monitoring-<telegraf version>.tar.gz from a Cisco VIM pod using steps listed in Installation Procedure for Monitoring External Servers
Using CVIM-MON local. If you wish to monitor these servers independent of Cisco VIM installation, update the setup_data of CVIM MON Central as listed
below and initiate an installation or reconfiguration of CVIMMON HA.

cvim-mon-stacks:
regions:
- metros:
- name: I
pods:

- ip: <target_ip_address_1>:9273
name: <name_1>
target_ type: external

- ip: <target ip address 2>:9273
name: <name_2>
target_type: external

Note: IPv6 address is only supported when CVIM is running IPvé

To deploy the Telegraf plugin into the external servers, follow the steps listed in Installation Procedure for Monitoring External Servers Using CVIM-MON
Local.

Uninstallation Procedure for Monitoring External Servers Using CVIM-MON Central

To remove the Telegraf agent and related configuration on the external server, go to the directory (external-monitoring-xxx) created as a result of untarring
external-monitoring-<telegraf version>.tar.gz in the external server targeted for monitoring, and execute the following:

#sudo ./monitor external unbootstrap.sh

1" Ensure that you take out the corresponding external_servers information from the CVIM_MON_CENTRAL setup_data and then run the delete
operation to avoid false alerts. For details on how to invoke the delete operation, see Stack Operations

Enabling CVIM-MON Post Pod Installation

You can enable CVIM-MON, SNMP traps and UCS-C bare metal alerts (SNMP, SERVER_MON) using the reconfigure option, post installation of Cisco
VIM.

1 After you enable the CVIM-MON or CVIM-TRAP, it cannot be disabled again.

To enable CVIM-MON and SNMP trap features or to change the individual parameters in CVIM-MON, SNMP, SERVER_MON, and
MANAGEMENT_SERVERS:

1. Take a backup of setup_data file and update it manually with the configuration details by entering the following command:

cd /root/

mkdir MyDir

cp /root/openstack-configs/setup_data.yaml /root/MyDir
cd /root/MyDir

H H H H

2. Edit the setup data.
3. Save the file and execute the below command:

ciscovim --setupfile /root/MyDir/setup data.yaml reconfigure

1 The migration from SNMPv2 to SNMPVv3 is only supported, but not vice-versa.

CVIM-MON Grafana/Prometheus and AlertManager with LDAP Backend

The CVIM-MON LDAP feature allows you to login with LDAP credentials. You can enable this feature by configuring the connection to the LDAP server
and setting a valid filter to access Grafana/Prometheus and AlertManager with your LDAP credentials. Once the filter is set, you can map the user groups
with specific roles of permission in Grafana.

CVIM-MON Grafana supports the roles of:

® Viewer: Can only view dashboards and cannot modify them.
® Editor: Can view, create, copy, modify and save dashboards.

For Prometheus and AlertManager, users belonging to group mapped with Admin org_role have access.

® If you are using FQDN as /dap_uri, the management node must be able to resolve it.
® Only one LDAP server is allowed for authentication in Kibana.

To enable LDAP, you must modify the setup_data.yaml file by adding a Idap section under the CVIM_MON section as following (replace example values
as appropriate):

CVIM_MON:
central: false
enabled: true
ldap:

domain mappings:
- attributes: {email: email, name: givenName, surname: sn, username: uid}
bind dn: <bind dn>
bind password: <bind_ password>
domain_name: <domain_ name>
group_search base _dns: ['ou=Groups,dc=org,dc=com']
group_search_filter: (&(objectClass=posixGroup) (memberUid=%s))
group search filter user attribute: uid
ldap_uri: ldaps://<ldap_ip/ldap_fqgdn>
group_attribute: <group_attributes>
group attribute is dn: true/false
root_ca_cert: <path to_root_ca_certs>
search_base_dns: ['dc=org,dc=com']
search filter: (uid=%s)
use_ssl: true/false
ldap_user name: sAMAccountName # mandatory for AD

group_mappings:
- {group_dn: 'cn=group2,ou=Groups,dc=org,dc=com', org_role: Admin}
- {group_dn: 'cn=group3,ou=Groups,dc=org,dc=com', org role: Viewer}

polling intervals: {high frequency: 10s, low_frequency: 2m, medium frequency: 1m}

ui_access: true

Property Field Description
Required
search_filter Mandatory Filter set for the queries.
search_base_dns Mandatory It is the base DNS name used for all queries.
Idap_uri Mandatory | Default port is 389. Takes the value 636, if use_ss/ = True and port is not defined.
group_mappings Mandatory = Must contain at least one group with org_role Admin. Optionally, you can add a second group with org_role Vie
wer.

You can add multiple LDAP groups mapped to org_role Admin or Viewer.

domain_name Mandatory = Any non-empty name is acceptable.

domain_mappings Mandatory = Must contain one domain exactly.

bind_password Conditional = Mandatory, if LDAP supports binding. Not required for anonymous bind.
bind_dn Optional Mandatory, if LDAP does not support anonymous bind.
attributes Optional Mandatory key, but individual attributes are optional.

use_ssl Optional Optional. If not provided, defaults to False.

start_tls Optional Optional. If not provided, defaults to False.

client_cert Optional Authentication against LDAP servers requiring client certificates.
client_key Optional Authentication against LDAP servers requiring client certificates.
root_ca_cert Optional Path to your root CA certificate.

ldap_user_name Optional Mandatory, if MS AD is configured.

group_search_filter Optional To search group members.

group_search_base_dns | Optional Base DN to search groups.

group_search_filter_us | Optional Indicates the distinguished name of the client username.
er_attribute

group_attribute_is_dn Optional Default is True. If set to True, the distinguished name of the client username is used for checking group
membership, otherwise, the client username is used.

group_attribute Optional Default value is memberUid.

For monitoring details, see CVIM-MON

Highly Available CVIM Monitor

Overview of HA CVIM-MON
Overview of Highly Available Cisco VIM Monitor

From Cisco VIM 3.4.3, you can monitor Cisco VIM pods either:
® Individually using the local CVIM Monitor (CVIM-MON) or
® Centrally using the new HA CVIM Monitor (HA CVIM-MON)

The local CVIM-MON (introduced in Cisco VIM 3.0.0) provides pod-level monitoring, based on a Prometheus stack that is hosted on the pod management
node. This local solution supports the largest supported Cisco VIM pod size (128 nodes).
Local CVIM-MON has the following limitations:

® Not highly available as the downtime of the management node stops metric collection in the pod.
® Multi-site monitoring of large deployments with a large number of sites can be operationally complex and requires configuration of each Cisco
VIM pod.

» Very small sites with severely limited hardware resources (edge cloud) cannot afford the
resources to run a dedicated Prometheus stack per site.

HA CVIM-MON is a complete hardware and software platform that addresses local CVIM-MON limitations with the following features:

Integrated and highly-available monitoring of a large number of Cisco VIM pods

Centralized TSDB, alarm and web-based GUI dashboards

It is based on bare metal Kubernetes platform

Scalable to hundreds of Cisco VIM pods and thousands of nodes.

Provides a longer retention time for collected metrics (months instead of 15 days for the local CVIM-MON)
Low sampling interval of one minute for largest deployments.

Monitor pods of any size including very small pods (edge deployments) and individual bare metal servers.
Monitored pods or servers are hierarchically grouped into metros and metros in regions.

HA CVIM-MON supports and requires a limited set of hardware configurations. HA CVIM-MON deploys on bare metal using a fully automated installer and
can be configured or reconfigured by updating the setup data configuration file.

The following table provides a comparative summary of monitoring features between Cisco VIM 3.4.x and Cisco VIM 4.0.0:

Features Cisco VIM Cisco VIM Comments
3.4.x 4.0.0
Cisco VIM pod local monitoring (CVIM- | yes yes
MON)
Cisco VIM pod centralized monitoring yes yes Local and centralized monitoring are exclusive. Requires an HA CVIM-MON cluster to
(HA CVIM-MON) monitor the Cisco VIM pods.
CVIM pod local to central monitoring yes yes No service impact

reconfiguration

CVIM pod central to local monitoring no no Not supported
reconfiguration

HA CVIM-MON unified monitoring limited within yes A monitoring domain provides a set of service points (Grafana, Prometheus queries),
access points stack alerting rules, and alert manager configurations, to monitor all Cisco VIM pods configured in
boundary only that domain.
HA CVIM-MON estimated max scale 1000 sites 1000 sites Exact limit depends on the actual cluster hardware BOM.
per monitoring stack (1m interval) /8000 nodes /8000 nodes
(per stack) (per stack) A monitoring stack is the software component that is responsible for collecting metrics from

a group of Cisco VIM pods.

HA CVIM-MON max number of min(4, N-1) min(4, N-2) N: number of HA CVIM-MON cluster nodes (controller and worker nodes)

monitoring stacks per cluster
For example, with HA CVIM-MON 4.0, the minimum configuration to support 4000 sites is
three controller nodes and three worker nodes.

HA CVIM-MON metric collection up to 30 no downtime The most common stack failure is caused when the cluster node running the stack goes
downtime in case of stack or cluster minutes down (system crash or hardware failure)

node failure

HA CVIM-MON cluster node self- partial complete The self-monitoring added in 4.0.0 includes bare metal, system, link states, and IPMI
monitoring metrics with associated alerting rules - similar to Cisco VIM pod servers.

UCS-C bare metal alerts are still not supported in 4.0.0 and planned for a future version.

HA CVIM-MON Grafana built- flat 1-level folders | In 4.0.0, the built-in dashboards are grouped by folders
dashboards organization

HA CVIM-MON CLI integration partial complete In 4.0.0, all cluster management operations are integrated under the k8s_runner CLI

Hardware Requirements for HA CVIM MON
Hardware Requirements for HA CVIM-MON

HA CVIM-MON is available for Cisco UCS C-series servers or Quanta servers with:

® One server used as a management node.
® Three or more servers to form a cluster managed by Kubernetes:

® 384GB RAM
® All-SSD storage devices on the cluster nodes

To achieve the required network throughput, one of the following must be satisfied:

® Each UCS server must have two Intel X710 cards.
® Each Quanta server must have one Intel XXV 710 card.

Networking Layout
Networking Layout for HA CVIM-MON

® Public Network
® Management and Provisioning Segment

Public Network

The public network (br_api) interfaces with:

External applications using HA CVIM-MON such as an OSS/BSS system querying the TSDB or browsers connecting to the HA CVIM-MON GUI.
Managed Cisco VIM pods (for metrics collection).

Managed servers.

HA CVIM-MON administrators (ssh).

This public network is implemented by the br_api interface and provides external access to the following services:

® Kubernetes infrastructure administrator services.
® Kubernetes cluster nodes (ssh).
® Grafana, Prometheus, and Alertmanager HTTP services.

The public network segment needs one VLAN and at least five IPv4 or IPv6 addresses in an externally accessible subnet:

® One IP address for the management node.
® One IP address for each of the cluster nodes.
® One IP address for external_Ib_vip for accessing the HA CVIM-MON services.

Management and Provisioning Segment

The management segment (br_mgmt) needs one separate VLAN and one subnet with an address pool large enough to accommodate all the current and
future servers planned for the cluster for initial provisioning (PXE boot Linux) and for all Kubernetes internal communication. This VLAN and subnet can be
local to CVIM-MON for UCS C-Series and Quanta deployments. All cluster nodes need an IP address from this subnet. The BMC or CIMC network must
be accessible through the public network.

Network Topologies
Network Topologies for HA CVIM-MON

® UCS C-Series Network Topology
® NXOS Switch Configuration for CVIM MON HA UCS nodes

® Quanta (QCT) Network Topology
® NXOS Switch Configuration for CVIM MON HA QCT nodes
® NXOS Switch Configuration for Management Node (QCT or UCS)

UCS C-Series Network Topology

UCS-C based servers use Intel X710 NIC (4x10G, two NICs for each cluster node, one NIC for the management node). Teaming is used for the br_api and

br_mgmt links with dual N9K TORs.
The management node saves one Intel X710 NIC by using X710 for both br_mgmt links and LOM ports for the br_api links.

N9K-C93180YC-FX

UCS-C240 (x1)

mgmt node
\—/ \/ boPdl
bond1 bondo bondo [LOM(1G) /™,
CIMC [cimc 10]2
UCS-C240 (3+) P
cluster nodes *7T - -
/WY~ 7
\o(’/ ”
A

Switch (Catalyst)

NXOS Switch Configuration for CVIM MON HA UCS nodes

It is assumed that switches are preconfigured in virtual port channel mode. For NXOS configuration details, see NXOS Switch Configuration Guide. Listed
below are the correspoding NXOS switch configuration of the of the port A and B links for each of the UCS nodes that make up the CVIM MON HA cluster.

The NXOS Switch configuration connected to Intel NIC port A on the UCS nodes that make up the CVIM MON HA cluster:

interface port-channel <pc_id 3>
description mgmt API interface
switchport
switchport access vlan <api_vlan id>
spanning-tree port type edge
no lacp suspend-individual
vpc <pc_id_3>

interface Ethernetl/<id 3>
description mgmt API interface
switchport
switchport access vlan <api_vlan_id>
channel-group <pc_id 3> mode active
no shutdown

The NXOS Switch configuration connected to Intel NIC port B on the UCS nodes that make up the CVIM MON HA cluster:

interface port-channel <pc_id 4>
description mgmt interface
switchport
switchport access vlan <mgmt_vlan_id>
spanning-tree port type edge
no lacp suspend-individual
vpc <pc_id_ 4>

interface Ethernetl/<id 4>
description america2 mgmt interface
switchport
switchport access vlan <mgmt_vlan_id>
channel-group <pc_id 4> mode active
no shutdown

Quanta (QCT) Network Topology

The cluster nodes are connected to the ToR switches from the Intel XXV710 card ports as shown below. The br_api and br_mgmt interfaces are mapped
on two different VLANs sharing the same physical links that are connected to the dual N9K TORs using VLAN trunking.

N9K-C93180YC-FX

Quanta (1)
mgmt node
Z
¢ ocC
. _ =
XXV710 | - / Mezz bond1
! -7 10G L
(2x25G),_ P - (10G) 7 e
bond0.843 bond0 bond0 / v (1G)
vlan 843 native vlan BMC BMC " : 5 :
g P -
Quanta W - -~ _-
cluster nodes (3+) \o(;'a&} ” _ -
>
s 20

Switch (Catalyst)

The management node uses the OCP Mezz NIC for br_mgmt (2x10G on VLAN 843) and the PCle NIC for br_api (2x1G on native VLAN). The two br-api
links of the management node are wired to the OOB switch.

NXOS Switch Configuration for CVIM MON HA QCT nodes

It is assumed that switches are preconfigured in virtual port channel mode. Listed below are the specific configuration of the port A and B links for each of
the Quanta nodes that make up the CVIMMON HA cluster.

The NXOS switch configuration connected to the 25G Intel NIC of the Quanta nodes that make up the CVIMMON HA cluster:

interface port-channel <pc_id 3>
description mgmt and API interface
switchport
switchport mode trunk
switchport trunk native vlan <mgmt_vlan>
switchport trunk allowed vlan <mgmt_vlan,api_vlan>
no lacp suspend-individual
vpc <pc_id_3>

interface Ethernetl/<id 3>
description mgmt and API interface ports
switchport
switchport mode trunk
switchport trunk native vlan <mgmt_vlans>
switchport trunk allowed vlan <mgmt vlan,api vlans>
spanning-tree port type edge trunk
channel-group <pc_id 3> mode active
no shutdown

NXOS Switch Configuration for Management Node (QCT or UCS)

It is assumed that switches are preconfigured in virtual port channel mode. Listed below are the specific configuration of the br_api (over LOM interface via
Copper) and br_mgmt links for the UCS or Quanta-based management node of CVIMMON HA cluster.

The NXOS switch configuration of br_api (over 1G) for the management node in the CVIMMON HA cluster:

interface port-channel <pc_id 1>
description API interface
switchport
switchport access vlan <api_vlan id>
spanning-tree port type edge
no lacp suspend-individual
vpc <pc_id_ 1>

interface Ethernetl/<id 1>
description API interface
switchport
switchport access vlan <api_vlan_id >
channel-group <pc_id 1> mode active
no shutdown

The NXOS switch configuration of br_mgmt (over 10G interface) for the management node in the CVIMMON HA cluster:

interface port-channel <pc_id 2>
description mgmt interface
switchport
switchport access vlan <mgmt_vlan_id>
spanning-tree port type edge
no lacp suspend-individual
vpc <pc_id_2>

interface Ethernetl/<id 2>
description america2 mgmt interface
switchport
switchport access vlan <mgmt_vlan_id>
channel-group <pc_id 2> mode active
no shutdown

For more details on switch configuration, see NXOS Switch Configuration Guide.

Architecture
Overview of HA CVIM-MON Architecture

The minimum hardware configuration runs with a single management node and three controller nodes. In this configuration, the three controller nodes host
the Kubernetes control plane components and application containers that perform the HA CVIM-MON function. You can extend this configuration with one
or more worker nodes, based on computational and storage requirements. Worker nodes host only application containers.

The HA CVIM-MON is based on the following software components:

® One or more Prometheus servers running in one or more stacks
® One Minio object storage cluster to store all monitoring data
® One set of Kubernetes pods based on Thanos open-source project to manage

® user queries and time series deduplication

® storage of Prometheus time series into Minio

® unified alerting rules
® One SNMP agent to forward alerts to external SNMP managers
® One Grafana cluster for providing the web user interface

Minio object storage cluster handles persistent and highly available storage for monitoring data. It also takes care of replicating the storage blocks across
all cluster nodes in a transparent way to the applications.

The main differences of HA CVIM-MON 4.0.0 compared to HA CVIM-MON 3.4.x are as follows:
The time series persistent storage is Minio object storage instead of the Portworx block-level storage.
A monitoring stack is now exclusively in charge of scraping metrics from targets.

Each stack is composed mainly of two Prometheus servers that are configured in active-active for scraping the same set of Cisco VIM pods.

L]
L]
L]
® Alerting, user queries, and Grafana user interface are now unified (one service point per cluster) and no longer per stack.

For more information on stacks, see Stack Operations

For information on monitoring external servers using HA CVIM-MON , see External Servers

Installation Modes
Installation Modes for HA CVIM-MON

You can install HA CVIM-MON using three installation modes.

® Connected Mode of Install
® Air-Gapped Install using USB
® Air-Gapped Installation Using Software Delivery Server

@ CVIM-MON installation must be done using a VNC or screen so that the session is not lost. If you do not have a VNC environment, execute the
same from KVM console of the management node. Ensure that you do not run this command in background or with nohup option to avoid failure

Connected Mode of Install

You can perform this mode of installation, when the Cisco VIM management node has internet connectivity. All the artifacts and docker images needed for
installation are directly fetched from the internet and utilized by the installer. This is the default mode of HA CVIM-MON install. You must provide the
following information in the setup data file to fetch artifacts from cvim-registry.com:

REGISTRY_USERNAME: <username>
REGISTRY PASSWORD: <passwords>
REGISTRY_EMAIL: <emails>

Air-Gapped Install using USB

The following procedure describes how to download the Cisco NFVI installation files onto a USB drive of the staging server with Internet access. You can
use the USB to load the Cisco NFVI installation files onto the management node without Internet access.

1 Ensure that you use Virtual Network Computing (VNC), a terminal multiplexer, or similar screen sessions to complete the following steps.

@ Before you begin you must have a CentOS 7 staging server (VM, laptop, or UCS server) with a 64 GB USB 2.0 drive. You can use USB 3.0
64GB if the management node is of type Cisco UCS M5. The staging server must have a wired Internet connection to download the Cisco VIM
installation files onto the USB drive. Once downloaded, you can copy the installation files onto the management node from a USB drive.

1. Fetching artifacts to the staging server:
a. On the staging server, use yum to install the following packages:

* PyYAML
® Python-requests
® Centos-release-scl
® Python 3.6
Check if python 3.6 binary is located at /opt/rh/rh-python36/root/bin/, if not copy the python 3.6 binary to /opt/rh/rh-python36/root
/bin/.
b. Log into Cisco VIM software download site and download the getartifacts.py script from the external registry:

download the new getartifacts.py file (see example below)

curl -o getartifacts.py -u '<usernames:<password>' https://cvim-registry.com/mercury-releases
/cvim34-rhel7-ospl3/releases/<releaseids>/getartifacts.py

Change the permission of getartificats.py chmod +x getartifacts.py

c. Run getartifacts.py.

The script formats the USB2.0 drive (or USB3.0 drive for M5/Quanta based management node) and downloads the installation files. You
must provide the registry username and password, tag ID, and USB partition on the staging server.

./getartifacts.py -t <tag id > -u <username> -p <password> -d <device path> --mgmtk8s [--proxy]
<proxys

http://cvim-registry.com

d. Use the following command to verify the downloaded artifacts and container images:

create a directory

sudo mkdir -p /mnt/Cisco

You need to mount the partition with the steps given below:
sudo mount <device paths> /mnt/Cisco

cd /mnt/Cisco

execute the verification script

./test-usb

e. If the test-usb script reports any failures, you can unmount the USB and run the getartifacts command again with the --retry option.

sudo ./getartifacts.py -t <tag_id> -u <username> -p <password> -d <device_ path> --mgmtk8s --retry

f. Mount the USB and then run the test-usb command to validate if all the files are downloaded:

create a directory sudo mkdir -p /mnt/Cisco

You need to mount the partition with the steps given below: sudo mount <device_path> /mnt/Cisco
cd /mnt/Cisco

execute the verification script

./test-usb

g. When the USB integrity test is done, unmount the USB drive by using the following command:

Unmount USB device
sudo umount /mnt/Cisco

Importing artifacts from the USB on to the management node.
2. On the CVIM MON HA management node, use the prepared USB stick and complete the following steps:

a. Insert the USB stick into the management node drive, after you install the buildnode.iso.

b. Use import_artifacts.sh script to copy all the artifacts onto the management node. After successful completion, the installation artifacts
are copied to /var/cisco/artifacts on the management node. After the artifacts are available in the management node, the steps to install
HA CVIM MON pod remain the same.

Run import artifacts script
cd ~/installer-<tag_id>/tools
./import artifacts.sh

3. Configure the setup data file:

HA CVIM MON setup data file has a configuration to set the install mode. Set the install mode as disconnected to prevent the management node
from fetching the artifacts from Internet. For example:

INSTALL_MODE: disconnected

Air-Gapped Installation Using Software Delivery Server

The Software Delivery Server (SDS) is also called the Cisco VIM Software Hub.

Cisco VIM Software Hub alleviates the need for Cisco VIM management nodes to have internet connectivity and helps to remove the logistics of shipping
USBs to multiple pods across the enterprise for software installation or update of the cloud. You can install and download the HA CVIM MON artifacts on
the SDS server.

For more information on the hardware requirements of the SDS server and steps to install artifacts, see Installing Cisco VIM Software Hub in Air-gapped
Mode.

Configuration of Setupdata File

After you pre-install the artifacts on the Cisco VIM Software Hub, you can start the HA CVIM MON installation using SDS.

1 Ensure that the br_api IP address can reach the br_private IP address of the SDS server.

https://confluence-eng-sjc11.cisco.com/conf/display/CVIM/Cisco+VIM+Software+Hub#CiscoVIMSoftwareHub-hub_airgapped
https://confluence-eng-sjc11.cisco.com/conf/display/CVIM/Cisco+VIM+Software+Hub#CiscoVIMSoftwareHub-hub_airgapped

1. Install the management node with build node 1SO.
2. Add the following fields in the HA CVIM MON setup data file.

REGISTRY NAME: '<registry name>' # Mandatory Parameter.

HA CVIM MON setup data file requires the REGISTRY_USERNAME and REGISTRY_PASSWORD to connect to the docker registry and fetch
docker images.

To fetch the docker images from Cisco VIM Software Hub node, provide the user credentials available in the SDS_READ_ONLY_USERS section
of sds_setup_data.yaml. The details of an admin user with read or write access to the docker registry are provided in SDS_REGISTRY_USERNA
ME and SDS_REGISTRY_PASSWORD. Hence, it is recommended that you have a read-only user on the Cisco VIM pod.

Setup File
Configuring Setup Data File for HA CVIM-MON

Overview
Argus Bare Metal Configuration Parameters
General HA CVIM-MON Cluster Parameters
HA CVIM-MON Stack Parameters
® Regions, Metros, and Pods
SNMP
Syslog Export
LDAP Support for Grafana (CVIM MON Stacks)
LDAP Support for Grafana (CVIM MON HA Cluster Monitor)

Overview

Before you begin, install the management node ISO on the management node. From the menu describing the different types of management nodes, select
HA CVIM-MON management node.

Use the setup data file that describes all the parameters of HA CVIM-MON cluster and the list of all monitored Cisco VIM pods, for the installation of the
HA CVIM-MON cluster after the management node is up and running.

Following are the naming conventions used:

® setup data file: Refers to various versions of the setup_data.yaml file that reside on the management node.

® setup data targets file: An optional file that contains per-stack specific targets, named <stack_name>.yaml . There can be as many target files as
the number of stacks. The targets files are always associated to a setup data file and are always located in the same directory. They are also
called side car files.

® setup data file set: A group of files that include a setup data file and zero or more associated targets files.

In most deployments, it is simpler to use a single setup data file that contains everything including Cisco VIM target pods.

HA CVIM-MON always keep a copy of the current setup data file set under /root/openstack-configs called the reference setup data file set. The reference
setup data file is /root/openstack-configs/setup_data.yaml and must be considered read-only for all operations. This file must never be modified directly.

1 Forfresh installation, the reference setup data file is not expected to be present in the current workspace. A candidate setup data file set must
be created outside the /root/openstack-configs/ directory and passed as an argument to the installer (—setupfile <pathname>).

After a successful installation, the reference setup data file set is updated with the candidate setup data file set to reflect the current state of the
cluster. You cannot directly modify or remove those files under any circumstances.

For detailed description of parameters, see the example setup data file available at: /root/openstack-configs/setup_data.yaml.HA CVIM-MON.EXAMPLE.

The following sections simply list the parameters in the setup data file.

Argus Bare Metal Configuration Parameters
You must set the following parameters for bare metal configuration for all cluster nodes:

® Unique cluster name to identify the current cluster
® |Pv4 or dual stack IPv4+IPv6 selection for the cluster deployment
® List of all cluster nodes and for each node:

® br_api and br_mgmt network addressing

® Type of node (controller or worker node)
® Bare metal access credentials for configuration of cluster node (CIMC or BMC)
® Linux root credentials for installation of Linux on all cluster nodes

General HA CVIM-MON Cluster Parameters

Configure the general parameters of the HA CVIM-MON cluster:

Internal IP address for internal load balancer for the br_mgmt network
External IP address for external load balancer for the br_api network
NTP and DNS servers

Domain suffix for all external URLs to HA CVIM-MON services

Virtual router ID for Virtual Router Redundancy Protocol (VRRP)
Location of the domain CA cert bundle to access the cluster services
Metric scraping interval

Metrics retention time. Defaults to 12 weeks.

Log rotation parameters

® Frequency of log rotation
® Maximum size of each log. When the size of the log exceeds this value, a rotation occurs.
®* Number of compressed archive log files to keep for each log file. The old archive log files are deleted.

The IP addresses must be either IPv4 or IPV4+IPv6, based on selected IP version in the bare metal section.

HA CVIM-MON Stack Parameters

Configure the stack properties given below:

Stack property Description

Stack name It is mandatory. Helps to identify each stack. The name must be in lowercase alphanumeric characters. The only special
character allowed is ' -' .

Regions, Metros, Provides the list of regions, metros, and pods that are monitored by the stack.
Pods

Regions, Metros, and Pods

The region, metro, and pod names must be unique within the monitoring domain. They can be any ASCII string. These names are only used as a metric
label value.
You must configure each region with the following parameters:

® Aregion name
® A list of metros

You must configure each metro with the following parameters:

® A metro name
® Alist of Cisco VIM pods

You must configure each Cisco VIM pod with the following parameters:

A pod name

Pod IP address (IPv4 or IPv6)

Pod HA proxy certificate

User name and password to access the pod

SNMP

You must configure SNMP for each stack only if SNMP traps are enabled. When SNMP traps are enabled, all HA CVIM-MON alerts in the stack are
forwarded to the configured SNMP managers using the selected SNMP version.
You must configure the following parameters for SNMP:
® |Pv4 or IPv6 address and port to send traps to.
® SNMP version: v2¢c (default) or v3.
® SNMP credentials:
® v2c-Community string
® v3-engine ID, credentials and encryption settings
Syslog Export
You must configure Syslog export feature when you want the HA CVIM-MON alerts logs to be sent to one or up to 4 remote syslog servers. When
SYSLOG_EXPORT is configured, you must configure SNMP.
Following are the parameters to be configured:
® [Pv4 or IPv6 address and port for sending the alert logs.

® Facility used by the remote syslog server (only user and local[1-7] are allowed)

Example:

cvim_mon_stacks:
- name: mystack
SYSLOG_EXPORT:
remote_hosts:
- host: 10.10.10.10
port: 514
facility: locals
- host: 10.10.10.11
port: 614
facility: user

LDAP Support for Grafana (CVIM MON Stacks)

Grafana has two default users with dynamically assigned passwords and different roles:

® Viewer: Cannot create new or modify existing dashboards.
® Admin: Can create new and modify existing dashboards.

LDAP configuration consists of two main sections:

1. Domain mappings
2. Group mappings

Domain Mappings
® attributes

email
member_of
name
surname
username

bind_dn

bind_password

use_ssl

start_tls

client_cert

client_key

root_ca_cert
group_search_filter
group_search_base_dns
group_search_filter_user_attribute
domain_name

Idap_uri
search_base_dns
search_filter

Group Mappings

These mappings are required to authorize users from a specific group in Idap to access Grafana with Admin or Viewer permissions.
® group_dn : '"CN=group2,0U=GroupsDC=0rgName,DC=com' , org_role: Admin
® group_dn : 'CN=group3,0U=GroupsDC=0rgName,DC=com', org_role: Viewer

Users from Group Employees get Admin access for Grafana whereas users from Read-Only Employees get Viewer privileges.

For example:

cvim_mon_stacks:
- name: gomstack
ldap:
domain mappings:

- attributes:
email: email
name: givenName
surname: sn
username: uid
bind _dn: <bind_dn>
bind password: <bind passwords>
domain name: corp_ldapl
group_search_base_dns: ['ou=Groups,dc=0rgName,dc=com']
group_search filter: " (&(objectClass=posixGroup) (memberUid=%s))"
group_search_filter user_attribute: uid
ldap uri: ldap(s)://<ldap_urls>:<Port>
root_ca_cert: "/root/cvimha certs/<cert names"
search_base_dns: ['dc=0OrgName,dc=com']
search_filter: "(uid=%s)"
start_tls: false
use_ssl: true

group_mappings:

- group_dn: cn=group2,ou=Groups,dc=0rgName, dc=com
org role: Admin

- group_dn: cn=group3,ou=Groups,dc=0rgName, dc=com
org_role: Viewer

® Only one LDAP server can be configured per stack
® |LDAP support is only enabled for Grafana Dashboard.

LDAP Support for Grafana (CVIM MON HA Cluster Monitor)

CVIM MON HA cluster itself is monitored by default on all CVIM MON HA pods. Grafana, Prometheus, and Alertmanager are installed in an isolated
cvimmon-monitor namespace. Default admin credentials are generated during installation to access Grafana dashboard. Also, the LDAP users are allowed
to access the dashboard. Example snippet of setup_data.yaml to add LDAP support for cvimmon-monitor is provided below:

CVIMMONHA CLUSTER_MONITOR:
ldap:
domain mappings:

- attributes:
email: email
name: givenName
surname: sn
username: uid
bind _dn: <bind dn>
bind password: <bind password>
domain name: corp_ldapl
group_search_base_dns: ['ou=Groups,dc=0rgName,dc=com']
group_search filter: " (&(objectClass=posixGroup) (memberUid=%s))"
group_search_filter user_attribute: uid
ldap_uri: ldap(s)://<ldap_urls>:<Port>
root ca_cert: "/root/cvimha certs/<cert names"
search _base_dns: ['dc=OrgName,dc=com']
search_filter: "(uid=%s)"
start_tls: false
use_ssl: true

group_mappings:

- group_dn: cn=group2,ou=Groups,dc=0rgName, dc=com
org_role: Admin

- group_dn: cn=group3, ou=Groups,dc=0rgName, dc=com
org_role: Viewer

External Servers

LDAP support can be added or removed as a Day 1 operation using reconfigure operation.
The servers must meet a few pre-requisites. For more information, see Prerequisites on Monitoring External Servers.

You must configure the following parameters for external servers:

® Server name
® Server IP address followed by port 9273

For more information on monitoring the external servers, see CVIMMON > Monitoring External Servers Using CVIM MON

HA CVIM-MON Installer
Installation and Installer CLI

Overview

General installer CLI

HA CVIM-MON Operational State
Operations and Operational State History
Installation Procedure

Installing HA CVIM-MON

Installation Failure

@ Before you Begin
Before using the HA CVIM-MON installer, see the following:

® |[nstallation Modes for HA CVIM-MON
® Configuring Setup File for HA CVIM-MON

Overview
Following are the high-level steps for installing HA CVIM-MON cluster:

® Perform hardware installation and network wiring (described earlier)

® Install the management node

¢ |nstall the HA CVIM-MON cluster
The procedure to install the HA CVIM-MON management node is similar to the Cisco VIM management node installation. To install the management node,
see Management Node on Quanta Servers and Management Node on UCS Servers. At the prompt, you must select HA CVIM-MON management node to
indicate that you are installing a management node for the HA CVIM-MON cluster.

This section describes the procedure to install an HA CVIM-MON cluster from the management node and introduces the CLI tools used to install and
manage the cluster.

General installer CLI

The k8s_runner CLI is the main tool used to manage the HA CVIM-MON cluster, including fresh installation, updates, and all Day 2 operations.

This command executes in a separate detachable screen based on tmux, with SIGINT signal disabled to prevent accidental termination of installation. If
the screen session is lost, any subsequent call to k8s_runner results in reattaching to the session that is currently in progress. This feature prevents the
accidental termination of any operation and more specifically for operations that can take a long time to complete.

The k8s_runner CLI can be executed from any location on the management node.

To see all available arguments, simply type k8s_runner --help.

HA CVIM-MON Operational State

A state machine tracks the current state of the HA CVIM-MON cluster on the management node, and determines the operations that can be performed at
any time.

The following diagram shows the state transitions and allowed operations:

- "
--" L
’ . RUMNI NG

ok \
[* gommit L
g LUTETT I
' ALl A
+ NUNNING) %
-' II
: UPBATING :
|. '] _I
RN G
K -~ =
. repie handoff /
5 coniroller 10 new wip o
RUNN NG = >
. ull other
operation "

RUNNING

Following are the state color codes:

Blue: Denotes stable/nominal state.

Red: Denotes stable/error state.

White: Denotes transient state indicating an operation in progress.
Gray: Denotes stable state post fresh installation of management node.

The following table gives the list and description of each state:

State
name

Uninstalled

Installed

Running

Updated

REP_NODE

Failed

Description

This is the initial state just after the installation of cluster management node. At that point, all other cluster nodes are normally still
uninstalled.

This is the most common nominal state where the cluster is fully installed and is scraping metrics from configured Cisco VIM pod targets.

This is a transient state indicating that an operation is in progress. Depending on the progress of operation, this state exists for certain
time.

This state indicates that an update operation is completed and the cluster is waiting for the administrator to either commit the update or
rollback.

No other operation other than the common read only operations (such as listing the state or showing endpoints) is allowed in this state.
Metrics collection is running with the new updated version of HA CVIM-MON.

This state indicates that the unrecoverable error has occurred during replace controller operation. This state requires TAC support to
return to a nominal state.

This state indicates that an unrecoverable error has occurred during installation or rollback operation. This state requires TAC support to
return to a nominal state.

The most common operations are:

® Fresh installation (Uninstalled => Installed)
® Other operation allowed in the INSTALLED state and not changing state ("all other operations" in the above diagram),
® Update to a new version of HA CVIM-MON (Installed => Updated and Updated => Installed with commit)

Operations and Operational State History

The state of the cluster is preserved on the management node disk using two tables:

® A state transition table or installation table that contains all past state transitions with their timestamp being limited to last 1000 state transitions.

® An operation history table or operation table that contains all past operations applied to the cluster, the operation execution steps, and their
timestamps being limited to last 1000 operations.

To view the state transition table and operation history tables, execute k8s_run_db CLI at anytime from any state and from any location.

k8s_run_db -h
usage: k8s run db [-h] [-u]l [-i] [-1 NUM_ENTRIES]

This tool helps override the failed state. Reserved for internal use.

optional arguments:

-h, --help show this help message and exit
-u, --force-state-uninstalled
This argument will reset the db but will still retain past entries
-i, --force-state-installed
This will set last entry as success in all the tables
-1 NUM_ENTRIES, --show NUM_ENTRIES

List last entries in both install and operation tables

By default, when no option is provided, k8s_run_db displays the last 20 entries in each table. To display more entries, enter the number of entries to be
displayed using the -/ or —show argument.

Example of output:

k8s_run_db

+----- tom s s m o tommmm - tommmmmmm - +
| SEQ | Timestamp (PST) | Session | State |
+----- o mmm s m oo +omm-mm--- - e +

| 2 | 2021-02-01 13:39:44 | 3 | INSTALLED |

| 1 | 2021-02-01 11:47:58 | 1 | UNINSTALLED |
+----- e it +o-mmm-- - R +
+----- oo s s m e m o R +o-----m-- +o--mmm - - -
B ettt +

| SEQ | Timestamp (PST) | Session | Elapsed | State
Info

+----- R +ommm - - tommmmm - tommm - m -
B e +

| 61 | 2021-02-01 14:38:39 | 12 | 0:00:01 | INSTALLED
/cvimmonha/ . . .

| 60 | 2021-02-01 14:38:38 | 12 | | INSTALLED
endpoint

| | | | |

| |

| 59 | 2021-02-01 14:35:51 | 11 | 0:03:21 | INSTALLED
/cisco/cvimmonha. . . |

| 58 | 2021-02-01 14:35:51 | 11 | 0:03:21 | INSTALLED
| |

| 57 | 2021-02-01 14:35:51 | 11 | 0:03:21 | INSTALLED
/cvimmonha/ . ..

| 56 | 2021-02-01 14:35:51 | 11 | 0:03:21 | INSTALLED
| |

| 55 | 2021-02-01 14:33:24 | 11 | 0:00:54 | INSTALLED
step=HELM INFRA

| 54 | 2021-02-01 14:33:24 | 11 | 0:00:54 | INSTALLED
| |

| 53 | 2021-02-01 14:32:30 | 11 | 0:00:00 | INSTALLED
Step=VALIDATION

| 52 | 2021-02-01 14:32:30 | 11 | | INSTALLED
cvim-pod --setupfile |

| | | | |

| |

| 51 | 2021-02-01 14:32:25 | 10 | 0:02:56 | INSTALLED
/cisco/cvim. . .

| 50 | 2021-02-01 14:32:24 | 10 | 0:02:55 | INSTALLED
| |

| 49 | 2021-02-01 14:32:24 | 10 | 0:02:55 | INSTALLED
/cvimmonha/ . . .

| 48 | 2021-02-01 14:32:24 | 10 | 0:02:55 | INSTALLED
| |

| 47 | 2021-02-01 14:30:04 | 10 | 0:00:35 | INSTALLED
step=HELM INFRA

| 46 | 2021-02-01 14:30:04 | 10 | 0:00:35 | INSTALLED
| |

| 45 | 2021-02-01 14:29:29 | 10 | 0:00:00 | INSTALLED
step=VALIDATION

| 44 | 2021-02-01 14:29:29 | 10 | | INSTALLED
cvim-pod --setupfile |

| | | | |

| |

| 43 | 2021-02-01 14:29:28 | 9 | 0:00:00 | INSTALLED
/cvimmonha/ . . .

| 42 | 2021-02-01 14:29:28 | 9 | | INSTALLED
endpoint

+----- o s s s tommmmm - tommmm - tommmm e s
B +

GET_ENDPOINT

GET_ENDPOINT

autobackup

autobackup
ADD_CVIM_POD
ADD CVIM POD
ADD CVIM POD
ADD CVIM POD
ADD_CVIM_POD

ADD_CVIM_POD

autobackup

autobackup
DELETE CVIM_ POD
DELETE_CVIM POD
DELETE_CVIM_POD
DELETE_CVIM_POD
DELETE CVIM_ POD

DELETE_CVIM_POD

GET_ENDPOINT

GET_ENDPOINT

| Step |

Success

Running

Success
Running
Success
Success
Running
Success
Running

Running

Success

Running

Success

Success

Running

Success

Running

Running

Success

Running

The following table gives the description of the components available in state transition table and operation history table:

Component

Description

| log=/var/log

| args=--get-

| backup=/var

| log=/var/log

| args=--add-

| backup=/var

| log=/var/log

| args=--delete-

| log=/var/log

| args=--get-

SEQ
Timestamp

Session

Elapsed
State
Operation

Step

Info

Installation

Indicates the sequence number associated with each row. This number is monotonically increased for each entry added in the table.
Denotes the timestamp associated with the entry (Local time zone).

A monotonically increasing number assigned to each operation that is executed by an administrator using the k8s_runner_db CLI. This
component is present in both tables to allow a cross-reference of the operations/steps with the state transition table.

In the operations table, the entries for operations that have multiple steps share the same session number.

Indicates the time taken for completing each operation/step.

Indicates the initial step of the operation (first session entry) or the last state of each entry (all subsequent entries for the session).
Indicates the operation being performed.

Indicates the steps executed for the current operation/session (if applicable). The step numbers for an operation are always increasing,
but can have gaps, for example, Step 1 and Step 7.

Provides additional information related to the operation or step:
® command line arguments passed

® location of the log file or backup file
® step name

Procedure

Once the cluster management node is installed and ready, configure the HA CVIM-MON cluster with a candidate setup_data.yaml file, and run the HA
CVIM-MON installation operation using the k8s_runner CLI. This install operation executes the following steps:

1. Validation
Verifies the hardware and software configuration.

2. Bootstrap Infra
Prepares the management node for CVIM MON HA installation.

3. Setup Argus
Prepares bare metal installation.

4. Argus bare metal
Installs and configures the operating system on all configured cluster nodes.

5. CVIM-MON Infra
Prepares the management node for Kubernetes and application installation.

6. Kubernetes Provisioner
Installs the Kubernetes infrastructure.

7. Helm Infra
Installs the HA CVIM-MON application.

You can list all steps using the -/ argument:

k8s_runner

-1

CVIM-MON HA INSTALL STEPS

i

| Operations

VALIDATION

|

| BOOTSTRAP_INFRA

| SETUP_ARGUS

| ARGUS_ BAREMETAL

| COMMON_CVIM_MON_INFRA
| KUBERNETES_PROVISIONER
|

HELM_ INFRA

______________ +
Operation ID |
______________ N

1 |
2 |
3 |
4 |
5 |
6 |
7 |

—_——— + — +

______________ +

Installing HA CVIM-MON

The normal procedure to install HA CVIM-MON is to run a complete installation where all the steps are executed. This operation is only allowed in the
UNINSTALLED state.

Run the k8s_runner CLI passing install and setupfile arguments:
k8s_runner --install --setupfile <path to_candidate_setup_data file>
S
CVIM MON HA ORCHESTRATOR
S

[1/5] [VALIDATION: INIT] [-] Omin 12secs

Input File Validations!

B e Y ks +------- +
| Rule | status | Error |

e P R +

| Schema Validation of Input File | PASS | None |

| Check for Valid Keys | PASS | None |

| Valid Operation Check | PASS | None |

| Check for duplicate keys | PASS | None |

| Check Cvim-Mon Target Nomenclature | PASS | None |

| Check duplicate Cvim-Mon target | PASS | None |

| Information | | |

| Check Argus api network information | PASS | None |

| Check Argus management network | PASS | None |

| information | \ \

| Check Argus api network information | PASS | None |

| Check Argus management network | PASS | None |

| information | | |

| Pod operations for CVIM-MON-HA | PASS | None |

e et T Hommmoo-- Homom-o- +

[1/5] [VALIDATION: INIT] [\] Omin 50secs
<snip>

The installation is considered complete, when the HA CVIM-MON application installation is completed successfully.

Installation Failure

Installation can fail for various reasons. The most common cause of failure is the use of incorrect setup data configuration. Most of the errors are detected
in Step 1, but other errors can be detected at a later step.

The failure recovery procedure varies based on the cluster state when the installation fails.
If the failure occurs in the early stage (Step 1 to Step 3) and the cluster is still in Installed state, fix the errors causing the failure and rerun the installation.

If the failure occurs in the later stage (Steps 4 to Step 7) and the cluster is in Failed state, contact TAC support.

Resources
Resources for Managing HA CVIM-MON Cluster

® Configuration File and Secrets
® List Service Endpoint URLs (--get-endpoint)
® Kubernetes Resources

You can manage your HA CVIM-MON cluster using various commands.

Configuration File and Secrets

The reference setup data file is available at:

~/openstack-configs/setup_data.yaml

The secrets are saved under:

~/openstack-configs/secrets.yaml

The secrets.yaml file is readable only from the root. This file contains the username and password for accessing Grafana, Prometheus, and Alertmanager
for each stack.
An example of secrets.yaml file is given below:

Prometheus-Password-cvimmon-monitor (Username:admin) : YyZM5£3DdyCKxklwlvIN4i010M2EoRbkjb+UKm0OSas5Y=
Grafana-Password-cvimmon-monitor (Username:admin) : 59QRzzo+PEedz8MDfdX26+DoaMJ/0gVgogqGWdUhDS78=
Grafana-Password-cvimmon-monitor (Username:cvimon) : Hhp2TZINZCu28pIlzW3F6huBKt IdH1VedtZxaC7P9dFs=
Grafana-Password-stackl (Username:admin) :h72DhjEnVS/Rr4nFCZmmxKRmuK/t7qjyZJJrFbTyCtM=
Grafana-Password-stackl (Username:cvimmon) : J72ChjJnVS/gh3yFCZmmxKRmuK/t9qjyZJJrFbJYCtN=
Prometheus-Password-stackl (Username:admin) : 1IPh5AI8JUhiHgX0vjHB3WOWzg]jy2jWEiC5egAQJuuls=
Grafana-Password-stacktsdb (Username:admin) :N/ABGAX0ym5VhJ7Q/k8TOloegRXuzvbOmU9JeunAlAs=
Grafana-Password-stacktsdb (Username:cvimmon) :X/Sjcjasadhsda23/k8TOlkegqRXuzvbomU9JfunAlCs=
Prometheus-Password-stacktsdb (Username:admin) : F8SPg+1qUSKMO8EvV1L+bTbL6RUSBI8QCz/Y]jzi0s7gw=

1 From Cisco VIM 3.4.6, cvimmon users are read-only users for Grafana, by default. If needed, you can configure for an existing stack as well.

Post update to Cisco VIM, 3.4.6 execute --regenerate-secrets option with k8s_runner.
For new stacks, use --add-stack to add cvimmon user for Grafana access.

List Service Endpoint URLs (--get-endpoint)

To get information about all available service endpoint URLs, use the following command:

k8s_run --get-endpoint

2021-01-15 02:31:05,280 INFO Runner - Executing: GET ENDPOINT (args: --get-endpoint)
o oo

s s s m e mmm——mm—— - +

| Endpoint | Endpoint FQDN
VIiP |

oo oo oo m— oo —oo———--——- - oo oo oo oo oo ——-——-—-——----

e +

| prometheus-cvimmon-monitor-server | https://cvmon-queensland-cvimmon-prometheus.cisco.com | 2001:420:293:
2422::168 |

| grafana | https://cvmon-queensland-cvimmon-grafana.cisco.com | 2001:420:293:
2422::168 |

| prometheus-thanos-querier-ingress | https://cvmon-queensland-thanos.cisco.com | 2001:420:293:
2422::168 |

| prometheus-thanos-ruler-ingress | https://cvmon-queensland-thanos-ruler.cisco.com | 2001:420:293:
2422::168 |

| thanos-alertmanager | https://cvmon-queensland-thanos-alertmanager.cisco.com | 2001:420:293:
2422::168 |

| prometheus-scalestack-server | https://cvimmon-prometheus-scalestack.cisco.com | 2001:420:293:
2422::168 |

| prometheus-stackresync-server | https://cvimmon-prometheus-stackresync.cisco.com | 2001:420:293:
2422::168 |

| minio | https://cvmon-queensland-minio.cisco.com | 2001:420:293:
2422::168 |

Bt B it

oo mm s o——-—-—— oo +

2021-01-15 02:31:07,321 INFO Runner - Operation GET_ ENDPOINT completed successfully

#

Endpoint Description and usage Typical use
Grafana Access the unified Grafana dashboard for all stacks most common / browser
prometheus-thanos-querier-ingress Send PROMAQL queries to retrieve metrics from the TSDB most common / browser or REST API
prometheus-thanos-ruler-ingress Evaluation of alerting and recording rules less common / browser
thanos-alertmanager View alerts, silence alerts common / browser or REST API

prometheus-cvimmon-monitor-server = Access prometheus server in charge of the HA CVIM-MON cluster = Reserved for troubleshooting/tech support
prometheus-<stack>-server Access prometheus server associated with the provided stack Reserved for troubleshooting/tech support

minio Access to Minio storage cluster Reserved for troubleshooting/tech support

1 AllURLs are assigned the same VIP address. The HTTP server at this IP address reroutes the traffic to the appropriate service container,
based on the target FQDN provided in the URL.

Kubernetes Resources

To list Kubernetes nodes, use the following command:

kubectl get nodes

NAME STATUS ROLES AGE VERSION
cvmongl Ready master 24d v1.17.8
cvmong2 Ready master 24d v1.17.8
cvmong3 Ready master 24d v1.17.8

In the above example, the Kubernetes cluster has three master nodes and one worker node.

To get the status of the cluster, use the following command:

kubectl cluster-info
Kubernetes master is running at https://[2001:420:293:2422::168] :6443
KubeDNS is running at https://[2001:420:293:2422::168] :6443/api/vl/namespaces/kube-system/services/kube-dns:dns

/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

Pod Operations
Supported Pod Operations

® Replacing a Controller Node (--replace-master)
Adding a Worker Node
® Configuring the Setup data File for Worker Node
® Add Worker Command (--add-worker)
® Removing a Worker Node (--remove-worker)
® Recovering Grafana (--cluster-recovery)
® Regenerating Certificates
® Kubernetes Certificates (--renew-k8s-certs)
® ETCD Certificates (--renew-etcd-certs)
® Self-signed Application Certificates (--regenerate-certs)
® Custom Application Certificates
® Regenerating Secrets
® View Secrets (--list-secrets)
® Regenerate Secrets (--regenerate-secrets)
® Custom Secrets (--set-secrets)
® Regenerating oob_parameters (--reconfigure-oob-creds)
® Global Parameters Reconfiguration (--reconfigure)

@ All CVIM-MON pod-operations are wrapped in a tmux session in order to avoid failures. Once the operation is finished, the session remains
open until it is manually closed with exit.

Replacing a Controller Node (--replace-master)

You must replace a controller node, if there are hardware issues, power failure, disk failure, and so on. HA CVIM-MON provides an option to replace the
controller node to help in the recovery of the controller node. A controller node can be online or offline during controller replace operation.
The conditions for replacing the controller node are given below:

® You must not change the setup data especially the node details for the replace node option.
® The replaced node and the defective node must have the same CIMC or BMC version.
® You can replace only one controller node at a time. You cannot use the replaced node, if more than one controller node is defective.

When you replace a node, the controller node is removed from the Kubernetes cluster and replaced with a new controller node with the same name and

the hardware details.
The following example shows how to replace a controller node:

k8s_runner --replace-master <node name> --setupfile <path to_candidate_ setup data file>
[root@queensland ~]# k8s_runner --replace-master cvmongl --setupfile ~/Save/new_setup data.yaml

Adding a Worker Node

You can add a worker node to the HA CVIM-MON cluster in the following two ways:

® Pre-define in the inital setup data file so that the worker node is installed when you install the HA CVIM-MON cluster.
® Add the worker node post-deployment using the --add-worker option, in a candidate setup data file.

Following are the conditions for adding the worker node to the HA CVIM-MON cluster:

® You must add the hardware details of the worker node in a candidate setup data file (Argus bare metal section).

® You can add only one worker at a time to the HA CVIM-MON cluster.

® The worker node hardware and the network hardware must conform to the same BOM defined by the HA CVIM-MON master nodes.
® You must apply the same networking schema of the HA CVIM-MON masters for all worker nodes.

Configuring the Setup data File for Worker Node

You must use the following schema for defining a worker node in a setup data file. The same schema is used for the master nodes except for the role field.
You must explicitly define the role field as a worker for the worker node.

- name: Workerl

oob_ip: 10.10.10.10

role: worker

ip_address:
management_1 v4: 10.10.11.10/24
management 1 gateway v4: 10.10.11.1
api 1 v4: 10.10.12.10/24
api 1 gateway v4: 10.10.12.1

Add Worker Command (--add-worker)

To add the worker to the HA CVIM-MON cluster, use the following command:

k8s_runner --add-worker <node_name> --setupfile <path_ to_candidate_setup data_file>
[root@matrix ~]# k8s_run --add-worker matrix04 --setupfile /root/setupdata/setupdata_ snmp.yaml
2021-01-12 16:54:38,990 INFO Runner - Executing: ADD WORKER (args: --add-worker matrix04 --setupfile /root
/setupdata/setupdata_snmp.yaml)
2021-01-12 16:54:39,055 INFO Runner - Adding Worker (s) matrix04
HHH#HHH R
CVIM MON HA ORCHESTRATOR
HHHH R

[1/5] [VALIDATION: INIT] [-] Omin 2secs

Management Node Validations!

R e e L e L dmmmmmm-- tmmmm——- +
| Rule | status | Error |

B e e it e to-mm-— - +o--—- - +

| Check Kernel Version | PASS | None |

[| ... [|

| Check RHEL Pkgs Install State | PASS | None |

e T L e L e R R +

[1/5] [VALIDATION: INIT] [/] Omin l4secs
Input File Validations! [-] Omin l4secs

B e e +o----— - R +

| Rule | Status | Error |

oo Fommmm-o- om----- +

| Schema Validation of Input File | PASS | None |

| T R

| CVIM MON HA Check | PASS | None |

R e LT tmmmmm - dmm----- +

[1/5] [VALIDATION: INIT] [\] lmin 13secs

UCS Hardware Validations

R e e T P R e T +
| UseCase | Status | Failure Reason |
e e P et e +
CIMC Firmware Version Check PASS None
PCIe Slot: HBA Status Check PASS None

| | | \
| | | \
| Redfish Enabled Check | PASS | None

| | | \
| | | \

Argus NIC Adapter Check PASS None

Disk Quantity and Uniformity Check PASS None
Fm oo oo - Fom e +
[1/5] [VALIDATION: INIT] [DONE!] lmin l4secs
ADD WORKER [VALIDATION] step completed [Success]
[2/5] [GENERATE_INVENTORY: INIT] [DONE!] Omin Osec
[WARNING] : Found variable using reserved name: namees Time!!] [|] Omin lsec
[2/5] [GENERATE_INVENTORY: Get Artifacts Phase...Takes Time!!] [DONE!] Omin 2secs
[2/5] [GENERATE_INVENTORY: generate-inventory-Check if Argus Site File is... [DONE!] Omin 2secs

ADD_WORKER [GENERATE_INVENTORY] step completed [Success]

[3/5] [ARGUS_BAREMETAL: generate-inventory-Copy Rendered Inventory File f... DONE! Omin Osec
[3/5] [ARGUS_BAREMETAL: INIT] DONE! Omin lsec
[3/5] [ARGUS_BAREMETAL: Validating Argus Configs..] DONE ! Omin 2secs

[
[
[
[3/5] [ARGUS_BAREMETAL: Initiating Argus Baremetal node operation..] [DONE! Omin 3secs
[
[
[

[3/5] [ARGUS_BAREMETAL: Initiating Node deploy: matrix04..] DONE ! Omin 3secs
[3/5] [ARGUS_BAREMETAL: Servers are pxe-booting..Takes Time!!] DONE! 10mins 26secs
[3/5] [ARGUS_BAREMETAL: Server (s) deploy operation finished: Success] DONE ! 10mins 33secs
ADD_WORKER [ARGUS_BAREMETAL] step completed [Success]

[4/5] [COMMON CVIM MON_INFRA: Server (s) deploy operation finished: Success] DONE ! Omin Osec

[WARNING] : Found variable using reserved name: name Omin lsec

[
[

[4/5] [COMMON_CVIM_MON_INFRA: INIT] [DONE! Omin 2secs
[

[4/5] [COMMON_CVIM_MON_INFRA: update-known-hosts-Set backup_name fact of DONE ! Omin 2secs
[...]

[4/5] [COMMON_CVIM MON_INFRA: ntp-Ntp date | Remove stale chronyd pid file] [DONE!] 4mins 31lsecs
[4/5] [COMMON_CVIM_MON_INFRA: ntp-Ntp date | Enable chronyd servicel [DONE!] 4mins 32secs
ADD_WORKER [COMMON_CVIM_MON_INFRA] step completed [Success]

[5/5] [KUBERNETES PROVISIONER: ntp-Ntp date | Enable chronyd service] DONE ! Omin Osec
[5/5] [KUBERNETES_PROVISIONER: INIT] DONE ! Omin 4secs

Omin 6secs

[
[
[5/5] [KUBERNETES_PROVISIONER: kubeadm-Remove swapfile from /etc/fstab] [DONE!
[
[

[5/5] [KUBERNETES PROVISIONER: kubeadm-Turn swap off] DONE ! Omin 8secs
[5/5] [KUBERNETES_PROVISIONER: kubeadm-Enable SELinux] DONE ! Omin 18secs
[...]

[5/5] [KUBERNETES_PROVISIONER: telegraf-Add Telegraf to Docker Users] [DONE!] Smins 36secs
[5/5] [KUBERNETES_PROVISIONER: telegraf-Restart service Telegraf] [DONE!] Smins 39secs

ADD_WORKER [KUBERNETES_PROVISIONER] step completed [Success]

2021-01-12 17:16:44,749 INFO Runner - Backing up setup data.yaml

2021-01-12 17:16:44,778 INFO Runner - Operation ADD WORKER completed successfully

2021-01-12 17:16:44,778 INFO Runner - Performing autobackup...

2021-01-12 17:16:44,806 INFO Runner - Executing autobackup to /var/cisco/cvimmonha autobackup
/cvimmonha autobackup 3.9.8 2021-01-12 17:16:44, disconnected install=False

2021-01-12 17:16:44,807 INFO Runner - Validating the current workspace...

2021-01-12 17:16:44,807 INFO Runner - Creating the backup...

2021-01-12 17:16:44,878 INFO Runner - Compressing the backup...

2021-01-12 17:16:45,093 INFO Runner - Backup completed successfully: /var/cisco/cvimmonha autobackup
/cvimmonha_autobackup 3.9.8_2021-01-12_17:16:44.tgz

The logs for this run are available at /var/log/cvimmonha/add_worker 2021-01-12_16:54:38

Removing a Worker Node (--remove-worker)

You can remove a worker node from the cluster if required. An HA CVIM-MON cluster can operate without any worker nodes. You can also remove all the
worker nodes. After this operation, Cisco VIM deletes the node from the HA CVIM-MON Kubernetes cluster. All the running pods are automatically
migrated to the other workers or masters.

The conditions for removing a worker node are given below:

® You can remove only one worker node at a time.
® You must delete the node details of the worker node from the candidate setup data file, before executing the remove worker operation.

To remove the worker node, use the following command:

k8s_runner --remove-worker <node name> --setupfile <path to candidate setup data file>
[root@matrix ~]# k8s_run --remove-worker matrix04 --setupfile /root/setupdata/setupdata_nw.yaml
2021-01-12 16:51:17,700 INFO Runner - Executing: REMOVE_WORKER (args: --remove-worker matrix04 --setupfile /root

/setupdata/setupdata_nw.yaml)
2021-01-12 16:51:17,798 INFO Runner - Removing Worker (s) matrix04

FHEH
CVIM MON HA ORCHESTRATOR
FHEHH R

[1/4] [VALIDATION: INIT] [- 1 Omin 2secs

Management Node Validations!

e e e oo +
| Rule | Status | Error |
e e oo +
Check Kernel Version	PASS	None
...
Check RHEL Pkgs Install State	PASS	None
B e e fmmmmm o B +

[1/2] [VALIDATION: INIT]

Input File Validations!

e e T Fommmom-- R it +
| Rule | Status | Error |
D e e e T T +o-mmm - e +
| Schema Validation of Input File | PASS | None |
[... [| ... |
| Check duplicate Cvim-Mon target | PASS | None |
| Information | | |
B e it P +o-mmm - - +
UCS Hardware Validations
B P e +
| Usecase | status | Failure Reason |
e R e fmmm e m e — o +
CIMC Firmware Version Check PASS None
PCIe Slot: HBA Status Check PASS None

| | | \
| | | \
| Redfish Enabled Check | PASS | None

| Argus NIC Adapter Check | | |
| Disk Quantity and Uniformity Check | |

[1/4] [VALIDATION: INIT]
REMOVE_WORKER [VALIDATION] step completed [Success]

[2/4] [CLEANUP: INIT]

[2/4] [CLEANUP: check-kubernetes-node-Check if the node is present]

[2/4] [CLEANUP: check-kubernetes-node-Get the list of masters]

[2/4] [CLEANUP: delete-kubernetes-node-Check if the node is present]
[2/4] [CLEANUP: delete-kubernetes-node-drain nodes]

[WARNING] : Could not match supplied host pattern, ignoring: ha master
[2/4] [CLEANUP: delete-kubernetes-node-delete nodes]

[2/4] [CLEANUP: delete-kubernetes-node-kubectl get nodes must be free of

REMOVE_WORKER [CLEANUP] step completed [Success]

[3/4] [ARGUS_BAREMETAL: delete-kubernetes-node-kubectl get nodes must be
[3/4][ARGUS_BAREMETAL: INIT]

[3/4] [ARGUS_BAREMETAL: Validating Argus Configs..]

[3/4] [ARGUS_BAREMETAL: Initiating Argus Baremetal node operation..]
[3/4] [ARGUS_BAREMETAL: Initiating Node delete: matrix04..]

[3/4] [ARGUS_BAREMETAL: Server(s) delete operation finished: Success]

REMOVE_WORKER [ARGUS_ BAREMETAL] step completed [Success]
[4/4] [GENERATE_INVENTORY: Server(s) delete operation finished: Success]

[WARNING] : Found variable using reserved name: name
[4/4][GENERATE_INVENTORY: INIT]

[4/4] [GENERATE_INVENTORY: generate-inventory-Check if Argus Site File is...

REMOVE_WORKER [GENERATE INVENTORY] step completed [Success]

2021-01-12 16:53:06,771 INFO Runner - Backing up setup_data.yaml

DONE!

DONE!
DONE!
DONE !
DONE!
DONE!

DONE!
DONE !

DONE!
DONE!
DONE !
DONE!
DONE !
DONE!

DONE!

DONE!
DONE !

2021-01-12 16:53:06,799 INFO Runner - Operation REMOVE_WORKER completed successfully

2021-01-12 16:53:06,800 INFO Runner - Performing autobackup...

Omin

Omin

Omin
Omin
Omin
Omin
Omin
Omin

Omin

Omin
Omin
Omin
Omin
Omin
Omin

Omin
Omin
Omin
Omin

2021-01-12 16:53:06,828 INFO Runner - Executing autobackup to /var/cisco/cvimmonha_autobackup

/cvimmonha autobackup 3.9.8 2021-01-12_16:53:06, disconnected install=False

2021-01-12 16:53:06,828 INFO Runner - Validating the current workspace...
2021-01-12 16:53:06,828 INFO Runner - Creating the backup...
2021-01-12 16:53:06,911 INFO Runner - Compressing the backup...

llsecs

58secs

3secs
3secs
6secs
1l7secs
18secs
18secs

25secs

Osec
1lsec
2secs
3secs
l4secs
21lsecs

Osec
Osec
lsec
2secs

2021-01-12 16:53:07,114 INFO Runner - Backup completed successfully: /var/cisco/cvimmonha autobackup

/cvimmonha autobackup 3.9.8_2021-01-12_ 16:53:06.tgz

The logs for this run are available at /var/log/cvimmonha/remove worker 2021-01-12 16:51:17

Recovering Grafana (--cluster-recovery)
Use the cluster-recovery operation in case of post-deployment Grafana failure scenarios:
® Disruptions caused by power outage.
® Hardware failures.
® Pod operation failures.
In such scenarios, both Grafana and mariadb-galera pods may fall into a crash loop, which can be identified by the KubePodCrashLooping alert firing.

Hence, Grafana must be redeployed from the beginning along with its underlying database.

1 There is no monitoring data loss caused by the recovery operation.

To initiate cluster-recovery, run the following command:

[rootequeensland ~]# k8s_run --cluster-recovery

2021-01-12 20:11:05,285 INFO Runner - Executing: CLUSTER RECOVERY (args: --cluster-recovery)
2021-01-12 20:11:08,043 INFO Runner - Running generic handler for CLUSTER_RECOVERY

FHEHHEHHEE
CVIM MON HA ORCHESTRATOR
HHHEHEHHE R

[1/2] [VALIDATION: INIT] [|] Omin 3secs

Management Node Validations!

e e e oo +
| Rule | Status | Error |
e e oo +
Check Kernel Version	PASS	None
...
Check RHEL Pkgs Install State	PASS	None
B e e et R T +---—- - +
[1/2] [VALIDATION: INIT] [|] Omin llsecs

Input File Validations!

e e ommmmmo - oo +

| Rule | Status | Error |

B e e R tommmm - - +

| Schema Validation of Input File | PASS | None |

| ... [| ... |

| Check duplicate Cvim-Mon target | PASS | None |

| Information | | |

B e e e B fommmm - +

[1/2] [VALIDATION: INIT] [DONE!] Omin 1l2secs

CLUSTER_RECOVERY [VALIDATION] step completed [Success]

[2/2] [HELM_INFRA: INIT] [DONE!] Omin 4secs
[2/2] [HELM_ INFRA: grafana-monitoring->Check whether helm binary exists] [DONE!] Omin 5secs
[2/2] [HELM_INFRA: grafana-monitoring->Get Helm Parent Directory] [DONE!] Omin 5secs
[2/2] [HELM_INFRA: grafana-monitoring->Check whether Helm App directory e... [DONE!] Omin 6secs
[...]

[2/2] [HELM_INFRA: grafana-CVIMMON-monitoring-s>Wait for Grafana to come up] [DONE!] 4mins 1l0secs
[2/2] [HELM_INFRA: grafana-CVIMMON-monitoring->Get User details] [DONE!] 4mins 1l0secs
[2/2] [HELM_INFRA: grafana-set_fact] [DONE!] 4mins 24secs

CLUSTER_RECOVERY [HELM_ INFRA] step completed [Success]

2021-01-12 20:15:45,087 INFO Runner - Operation CLUSTER RECOVERY completed successfully

2021-01-12 20:15:45,089 INFO Runner - Performing autobackup...

2021-01-12 20:15:45,153 INFO Runner - Executing autobackup to /var/cisco/cvimmonha autobackup
/cvimmonha_autobackup 3.9.5_2021-01-12_20:15:45, disconnected install=False

2021-01-12 20:15:45,154 INFO Runner - Validating the current workspace...

2021-01-12 20:15:45,214 INFO Runner - Creating the backup...

2021-01-12 20:15:45,343 INFO Runner - Compressing the backup...

2021-01-12 20:15:45,691 INFO Runner - Backup completed successfully: /var/cisco/cvimmonha_ autobackup
/cvimmonha autobackup 3.9.5_2021-01-12_20:15:45.tgz

The logs for this run are available at /var/log/cvimmonha/cluster recovery 2021-01-12 20:11:05

Regenerating Certificates

You can regenerate Kubernetes, ETCD, and application certificates using HA CVIM-MON.

Kubernetes Certificates (--renew-k8s-certs)

To regenerate Kubernetes certificates, use the following command:

[rootequeensland ~]# k8s_runner --renew-k8s-certs

2021-01-12 15:35:59,070 INFO Runner - Executing: RENEW_K8S CERTS (args: --renew-k8s-certs)

2021-01-12 15:36:01,873 INFO Runner - Running generic handler for RENEW_K8S_CERTS

FHEHHEHHEE
CVIM MON HA ORCHESTRATOR
HHHEHEHHE R

[1/2] [VALIDATION: INIT]

Management Node Validations!

e e e oo +
| Rule | Status | Error |
e e oo +
Check Kernel Version	PASS	None
...
Check RHEL Pkgs Install State	PASS	None
B e e fmmmmm o B +
[1/2] [VALIDATION: INIT]

Input File Validations!
e e ommmmmo - oo +

| Rule | Status | Error |

B P e +

| Schema Validation of Input File | PASS | None |

| ... [| ... |

| Check duplicate Cvim-Mon target | PASS | None |

| Information | | |

B e P s to-mmm - +

[1/2] [VALIDATION: INIT]

RENEW_K8S_CERTS [VALIDATION]

[2/2] [KUBERNETES PROVISIONER:
[2/2] [KUBERNETES_ PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES_ PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES PROVISIONER:
[2/2] [KUBERNETES_ PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES_ PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:

step completed [Success]

INIT]
kubernetes-renew-certs-Check Cluster State]

kubernetes-renew-certs-Get Validity Period...
kubernetes-renew-certs-Renew Validity Peri...
kubernetes-renew-certs-Get Validity Period...
kubernetes-renew-certs-Check if all Pods 1i...

kubernetes-renew-certs-Check Cluster State]

kubernetes-renew-certs-Get Validity Period...
kubernetes-renew-certs-Renew Validity Peri...
kubernetes-renew-certs-Get Validity Period...
kubernetes-renew-certs-Check if all Pods i...

kubernetes-renew-certs-Check Cluster State]

kubernetes-renew-certs-Get Validity Period...
kubernetes-renew-certs-Renew Validity Peri...
kubernetes-renew-certs-Get Validity Period...
kubernetes-renew-certs-Check if all Pods 1i...

RENEW_K8S_CERTS [KUBERNETES_PROVISIONER] step completed [Success]

2021-01-12 15:40:40,405 INFO Runner - Operation RENEW_K8S_CERTS completed successfully

DONE!

DONE !
DONE!
DONE !
DONE!
DONE!
DONE !
DONE!
DONE!
DONE !
DONE!
DONE !
DONE!
DONE!
DONE !
DONE!
DONE!

Omin

Omin

Omin

Omin
Omin
Omin
1min
lmin
lmin
1min
2mins
2mins
2mins
3mins
3mins
3mins
4mins
4mins
4mins

The logs for this run are available at /var/log/cvimmonha/renew_k8s_certs 2021-01-12_ 15:35:59

ETCD Certificates (--renew-etcd-certs)

To regenerate ETCD certificates, use the following command:

6secs

llsecs

1l2secs

llsecs
l4secs
39secs
5secs
30secs
39secs
43secs
7secs
32secs
56secs
S5secs
9secs
34secs
Osec
24secs
25secs

[rootequeensland ~]# k8s_runner --renew-etcd-certs

2021-01-12 15:41:37,523 INFO Runner - Executing: RENEW_ETCD CERTS (args:
2021-01-12 15:41:40,327 INFO Runner - Running generic handler for RENEW_ETCD_CERTS

FHEHHEHHEE
CVIM MON HA ORCHESTRATOR
HHHEHEHHE R

[1/2] [VALIDATION: INIT]

Management Node Validations!

e e e oo +
| Rule | Status | Error |
e e oo +
Check Kernel Version	PASS	None
...
Check RHEL Pkgs Install State	PASS	None
B e e fmmmmm o B +
[1/2] [VALIDATION: INIT]

Input File Validations!
e e ommmmmo - oo +

| Rule | Status | Error |

B P e +

| Schema Validation of Input File | PASS | None |

| ... [| ... |

| Check duplicate Cvim-Mon target | PASS | None |

| Information | | |

B e P s to-mmm - +

[1/2] [VALIDATION: INIT]

RENEW_ETCD_CERTS [VALIDATION]

[2/2] [KUBERNETES PROVISIONER:
[2/2] [KUBERNETES_ PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:
[2/2] [KUBERNETES_ PROVISIONER:
[2/2] [KUBERNETES_PROVISIONER:

step completed [Success]

INIT]

etcd_upgrade-Configure | Check if eted clu...
etcd_upgrade-Get Validity Period for all k...
etcd_upgrade-Renew Validity Period for all...
etcd_upgrade-Get Validity Period for all k...

RENEW_ETCD_CERTS [KUBERNETES_PROVISIONER] step completed [Success]

2021-01-12 15:42:49,068 INFO Runner - Operation RENEW_ETCD_ CERTS completed successfully

DONE!

DONE !
DONE!
DONE !

DONE!

--renew-etcd-certs)

Omin

Omin

Omin

Omin
Omin
Omin
Omin
Omin

The logs for this run are available at /var/log/cvimmonha/renew_etcd certs 2021-01-12 15:41:37

Self-signed Application Certificates (--regenerate-certs)

To regenerate self-signed application certificates, use the following command:

6secs

llsecs

1l2secs

19secs
22secs
33secs
44secs
56secs

k8s_runner --regenerate-certs --setupfile <path to_candidate_setup_data_ file>
[root@equeensland ~]# k8s_run --regenerate-certs --setupfile Save/setup data certs.yaml
2021-01-12 15:46:35,738 INFO Runner - Executing: REGENERATE_CERTS (args: --regenerate-certs --setupfile Save
/setup_data certs.yaml)
2021-01-12 15:44:21,396 INFO Runner - Running generic handler for REGENERATE_CERTS
R
CVIM MON HA ORCHESTRATOR
R

[1/2] [VALIDATION: INIT] [-] Omin 2secs

Management Node Validations!

e e E LT Hmmm oo i +
| Rule | Status | Error |

R e e e T T R R et +

| Check Kernel Version | PASS | None |

| VT I

| Check RHEL Pkgs Install State | PASS | None

B e e e e +-------- +------- +

[1/2] [VALIDATION: INIT] [I] Omin llsecs

Input File Validations!

e T e e +
| Rule | Status | Error |
B e e P dommmm - - +
| Schema Validation of Input File | PASS | None |
[[| ... |
| Check duplicate Cvim-Mon target | PASS | None |
| Information | | |
B e e R tommmm - - +
[1/2] [VALIDATION: INIT] [DONE!] Omin 1l2secs

REGENERATE_CERTS [VALIDATION] step completed [Success]

[2/2] [HELM_INFRA: INIT] [DONE!] Omin 4secs
[2/2] [HELM_ INFRA: nginx-ingress-controller-Check whether helm binary exi... [DONE!] Omin 5secs
[2/2] [HELM_INFRA: nginx-ingress-controller-List installed Helm charts.] [DONE!] Omin 5secs
[2/2] [HELM_INFRA: nginx-ingress-controller-Get Helm Parent Directory] [DONE!] Omin 6secs
[...]

[2/2] [HELM_INFRA: prometheus-CVIMMON-stackresync->Replace CVIM-MON Ingre... [DONE!] 3mins 2lsecs
[2/2] [HELM_ INFRA: prometheus-CVIMMON-stackresync->Replace CVIM-MON Ingre... [DONE!] 3mins 2lsecs
[2/2] [HELM_INFRA: prometheus-CVIMMON-stackresync->Delete all Cert Sensit... [DONE!] 3mins 28secs

REGENERATE_CERTS [HELM INFRA] step completed [Success]

2021-01-12 15:55:35,202 INFO Runner - Backing up setup_data.yaml

2021-01-12 15:55:35,206 INFO Runner - Operation REGENERATE_CERTS completed successfully
2021-01-12 15:55:35,207 INFO Runner - Performing autobackup...

2021-01-12 15:55:35,271 INFO Runner - Executing autobackup to /var/cisco/cvimmonha_autobackup
/cvimmonha autobackup 3.9.5 2021-01-12_15:55:35, disconnected install=False

2021-01-12 15:55:35,271 INFO Runner - Validating the current workspace...

2021-01-12 15:55:35,333 INFO Runner - Creating the backup...

2021-01-12 15:55:35,456 INFO Runner - Compressing the backup...

2021-01-12 15:55:35,793 INFO Runner - Backup completed successfully: /var/cisco/cvimmonha autobackup
/cvimmonha autobackup 3.9.5 2021-01-12_ 15:55:35.tgz

The logs for this run are available at /var/log/cvimmonha/regenerate certs 2021-01-12 15:51:51

Custom Application Certificates

Get Endpoint Command (--get-endpoint)

With central CVIM-MON, you can provide trusted CA signed x509 certificates which are used to access the Prometheus, Grafana, and Alertmanager
applications in the HA CVIM-MON cluster. If certificates are not provided, self-signed certificates are generated for these URLs by default. To find the
ingress URLs configured for Prometheus, Grafana, and Alertmanager in each stack, execute the following command:

[rootequeensland ~]# k8s_runner --get-endpoint

2021-01-12 13:05:14,471 INFO Runner - Executing: GET_ENDPOINT (args: --get-endpoint)
o oo

s s s m e mmm——mm—— - +

| Endpoint | Endpoint FQDN

VIiP |

oo oo oo m— oo —oo———--——- - oo oo oo oo oo ——-——-—-——----

e +

| prometheus-cvimmon-monitor-server | https://cvmon-queensland-cvimmon-prometheus.cisco.com | 2001:420:293:
2422::168 |

| grafana | https://cvmon-queensland-cvimmon-grafana.cisco.com | 2001:420:293:
2422::168 |

| prometheus-thanos-querier-ingress | https://cvmon-queensland-thanos.cisco.com | 2001:420:293:
2422::168 |

| prometheus-thanos-ruler-ingress | https://cvmon-queensland-thanos-ruler.cisco.com | 2001:420:293:
2422::168 |

| thanos-alertmanager | https://cvmon-queensland-thanos-alertmanager.cisco.com | 2001:420:293:
2422::168 |

| prometheus-scalestack-server | https://cvimmon-prometheus-scalestack.cisco.com | 2001:420:293:
2422::168 |

| prometheus-stackresync-server | https://cvimmon-prometheus-stackresync.cisco.com | 2001:420:293:
2422::168 |

| minio | https://cvmon-queensland-minio.cisco.com | 2001:420:293:
2422::168 |

Bt B it

oo mm s o——-—-—— oo +

2021-01-12 13:05:17,349 INFO Runner - Operation GET_ ENDPOINT completed successfully

Based on the result, you can use the application FQDN's as Common Name (CN) or alternative DNS names in the x509 certificate.
The central CVIM-MON supports two types of custom x509 Certificates:

® Domain level wildcard certificates
® Stack level certificates

A trusted CA signed certificate comprises of multiple files (root CA certificate, intermediate CA certificate, application certificate, and certification key). A
Privacy Enhanced Mail (PEM) bundle comprising of all these files must be created using the following steps:

cat user-ca.crt >> user-bundle.pem (Root CA and intermediate CA) (Optional)
cat user.crt >> user-bundle.pem (Certificate file)

cat user.key >> user-bundle.pem (Key File)

mv user-bundle.pem /root/cvimha certs

r vr O »r

1 Private key of a trusted CA signed certificate must not have any passphrase (non-encrypted key)

Domain Level Wildcard Certificates
A wildcard certificate can support multiple subdomains for a particular domain.
To generate this certificate, ensure that the following conditions are met:
® Must match the cvimmon_domain_suffix defined in the setup data file.
® Must be defined at a global level in the setup data file so that it can be used to access Grafana, Prometheus, and Alertmanager of all CVIM-MON

stacks.

An example of wildcard certificate is provided below:

$ grep cvimmon domain suffix /root/openstack-configs/setup data.yaml
cvimmon_domain_suffix: lab.test.com

$ openssl x509 -in /root/cvimha_certs/user-bundle.pem -text -noout

Subject: C=US, ST=California, L=San Jose, O=IT, CN=*.lab.test.com

To define a domain level custom certificate, edit the setup data file and add the path to the certificate as given below:

$ grep cvimmon domain /root/openstack-configs/setup data.yaml
cvimmon_domain_ suffix: lab.test.com
cvimmon_domain ca_cert: /root/cvimha certs/user-bundle.pem

® You can switch from self-signed certificate to custom certificates or vice versa using the --regenerate-certs command line option.

® You can add the appropriate certificate path in the candidate setup data file and run the --regenerate-certs for using the certificate.

® |f you remove the certificate path from the candidate setup data file and re-run the k8s_runner --regenerate-certs, you are switched
back to self-signed certificates.

Regenerating Secrets

During the deployment of CVIM MON HA cluster Grafana, Prometheus and AlertManager passwords are auto generated. These passwords are for admin
user and can be used to access respective dashboards. Additional CLI's have been provided with k8s_runner.py script to list passwords for each stack and
regenerate passwords.

To configure passwords for above services, use the following:

1. Regenerate Secrets
2. Custom Secrets

View Secrets (--list-secrets)

To view passwords for each application, first execute list-secrets command to fetch the secret keys.

[root@equeensland ~]# k8s_runner --list-secrets

2021-01-12 13:26:29,171 INFO Runner - Executing: LIST_SECRETS (args: --list-secrets)

| Grafana-Password-monitoring (Username:admin) |
| Grafana-ReadOnly-Password-monitoring(Username:cvimmon) |
| Thanos-Password-monitoring (Username:admin) |

After fetching the secret keys, execute get-password command with secret key to view the configured password for the service.

Get Password Command (--get-password)

[rootequeensland ~]# k8s run --get-password "Grafana-Password-monitoring(Username:admin)"

2021-01-12 13:27:10,970 INFO Runner - Executing: GET_PASSWORD (args: --get-password Grafana-Password-monitoring
(Username:admin))

| Grafana-Password-monitoring(Username:admin) | 4n6AVQ85wbWgDwgQlRSp/XqgpEASAN02ieoICDGL+E3U= |

1 Secret key must be provided in double quotes (") with --get-password cli.

Regenerate Secrets (--regenerate-secrets)
To regenerate all passwords at once, use the following command:
[rootequeensland ~]# k8s_runner --regenerate-secrets

2021-01-12 18:23:19,090 INFO Runner - Executing: REGENERATE_ SECRETS (args: --regenerate-secrets)
2021-01-12 18:23:21,866 INFO Runner - Regenerating Application Secrets

R
CVIM MON HA ORCHESTRATOR
A

[1/2] [VALIDATION: INIT] [|] Omin 3secs

Management Node Validations!

e D oo +
| Rule | Status | Error |

oo e R +

| Check Kernel Version | PASS | None |

| ... | ... | ... |

| Check RHEL Pkgs Install State | PASS | None

B e e fomm o B +

[1/2] [VALIDATION: INIT] [I] Omin llsecs

Input File Validations!

e it e e +
| Rule | Status | Error |
B e e e e tommmm - - +
| Schema Validation of Input File | PASS | None |
[[| ... |
| Check duplicate Cvim-Mon target | PASS | None |
| Information | | |
B e e e e tommmmm o - tommmm - - +
[1/2] [VALIDATION: INIT] [DONE!] Omin 1l2secs

REGENERATE_SECRETS [VALIDATION] step completed [Success]

[2/2] [HELM_INFRA: INIT] [DONE!] Omin 4secs
[2/2] [HELM_INFRA: nginx-ingress-controller-Check whether helm binary exi... [DONE!] Omin 5secs
[2/2] [HELM_INFRA: nginx-ingress-controller-List installed Helm charts.] [DONE!] Omin 5secs
[2/2] [HELM_INFRA: nginx-ingress-controller-Get Helm Parent Directory] [DONE!] Omin 6secs
[...]

[2/2] [HELM_INFRA: prometheus-CVIMMON-stackresync->Delete temporary auth [DONE!] llmins 18secs
[2/2] [HELM_INFRA: prometheus-CVIMMON-stackresync->Save the password in s... [DONE!] llmins 22secs

REGENERATE_SECRETS [HELM_INFRA] step completed [Success]

2021-01-12 18:34:57,512 INFO Runner - Operation REGENERATE SECRETS completed successfully

2021-01-12 18:34:57,514 INFO Runner - Performing autobackup...

2021-01-12 18:34:57,580 INFO Runner - Executing autobackup to /var/cisco/cvimmonha_autobackup
/cvimmonha autobackup 3.9.5 2021-01-12 18:34:57, disconnected install=False

2021-01-12 18:34:57,580 INFO Runner - Validating the current workspace...

2021-01-12 18:34:57,641 INFO Runner - Creating the backup...

2021-01-12 18:34:57,785 INFO Runner - Compressing the backup...

2021-01-12 18:34:58,109 INFO Runner - Backup completed successfully: /var/cisco/cvimmonha autobackup
/cvimmonha autobackup 3.9.5 2021-01-12 18:34:57.tgz

The logs for this run are available at /var/log/cvimmonha/regenerate_ secrets 2021-01-12_18:23:19

Custom Secrets (--set-secrets)

You can set custom passwords for Grafana and Thanos applications. To configure custom passwords, use the below command:

[rootequeensland ~]# k8s_runner --list-secrets

2021-01-12 13:26:29,171 INFO Runner - Executing: LIST SECRETS (args: --list-secrets)

| Grafana-Password-monitoring(Username:admin) |
| Grafana-ReadOnly-Password-monitoring (Username:cvimmon) |
| Thanos-Password-monitoring (Username:admin) |

To change password, create a new yaml file and the key you want to set for password.

For example:

To change password for Grafana-Password-monitoring, create a file and update the file with following:

Grafana-Password-monitoring (Username:admin) : "<New Passwords>"

1 Ensure that you use the same key name as shown in the output including Username:admin, otherwise the command is not executed.

Password Policy

1. Only alphanumeric and special characters are allowed for secrets.

2. Passwords must contain at least one letter, one special character, a digit, without blank spaces.
3. Password length must be >=8 and <= 44.
4. Allowed special characters [@./#+-=]

Save the yaml file where you entered the custom password and execute the following command:

[root@queensland ~]# k8s_runner --set-secrets /root/Save/new_secrets.

yaml

2021-01-12 13:13:06,369 INFO Runner - Executing: SET_SECRETS (args: --set-secrets /root/Save/new_secrets.yaml)
HHHHHHAHHHAHHHAHHHAHHHAHHHAH
CVIM MON HA ORCHESTRATOR
HHEHH R R

[1/2] [VALIDATION: INIT] [/] Omin 6secs

Management Node Validations!

B e e e LT +-------- +------- +
| Rule | status | Error |
e e E LT Hmmm oo i +
| Check Kernel Version | PASS | None |
[| ... [|
| Check RHEL Pkgs Install State | PASS | None |
et e et S +
[1/2] [VALIDATION: INIT] [I] Omin llsecs

Input File Validations!

D e e e R H-mm---- +
| Rule | Status | Error |
e T e e +
| Schema Validation of Input File | PASS | None |
[| | |
| Check duplicate Cvim-Mon target | PASS | None |
| Information | | |
e it T e R Homm---- +
[1/2] [VALIDATION: INIT] [DONE!] Omin 12secs

SET_SECRETS [VALIDATION] step completed [Success]

[2/2] [HELM_INFRA: INIT] [DONE!] Omin 4secs
[2/2] [HELM_INFRA: nginx-ingress-controller-Check whether helm binary exi... [DONE!] Omin 5secs
[2/2] [HELM_INFRA: nginx-ingress-controller-List installed Helm charts.] [DONE!] Omin S5secs
[2/2] [HELM_ INFRA: nginx-ingress-controller-Get Helm Parent Directory] [DONE!] Omin 6secs
[...]

[2/2] [HELM_INFRA: prometheus-stackresync->Get Helm Parent Directory] [DONE!] 2mins 54secs
[2/2] [HELM_INFRA: prometheus-stackresync->Check whether Helm App directo... [DONE!] 2mins 54secs
[2/2] [HELM_INFRA: prometheus-stackresync->Checking for Required Files an... [DONE!] 3mins 3secs

SET_SECRETS [HELM_INFRA] step completed [Success]

2021-01-12 13:16:25,601 INFO Runner - Operation SET SECRETS completed successfully

2021-01-12 13:16:25,603 INFO Runner - Performing autobackup...

2021-01-12 13:16:25,669 INFO Runner - Executing autobackup to /var/cisco/cvimmonha_autobackup
/cvimmonha autobackup 3.9.5 2021-01-12_ 13:16:25, disconnected install=False

2021-01-12 13:16:25,670 INFO Runner - Validating the current workspace...

2021-01-12 13:16:25,732 INFO Runner - Creating the backup...

2021-01-12 13:16:25,869 INFO Runner - Compressing the backup...

2021-01-12 13:16:26,207 INFO Runner - Backup completed successfully: /var/cisco/cvimmonha autobackup
/cvimmonha autobackup 3.9.5 2021-01-12_ 13:16:25.tgz

The logs for this run are available at /var/log/cvimmonha/set secrets 2021-01-12 13:13:06

[rootequeensland ~]#

Regenerating oob_parameters (--reconfigure-oob-creds)

For deployment of CVIM-MON HA cluster, you can r