

Achieving Improved Operational Simplicity with IOS XR

Amrit Hanspal, Product Manager

Mass scale Infrastructure Group (MIG)
March 2021

Why Operational Simplification?

Operating a Network is expensive

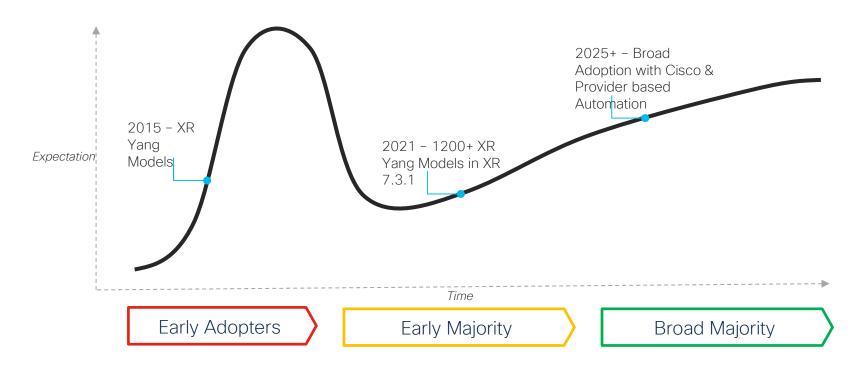
 Opex Costs estimated at 4x Capex

 Programmable Network Infrastructure

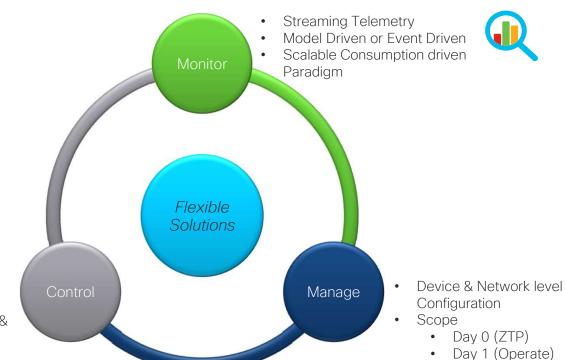
 Network wide operations instantly

 Automation drives new services

 Provides a path towards Cloud based services


Layout

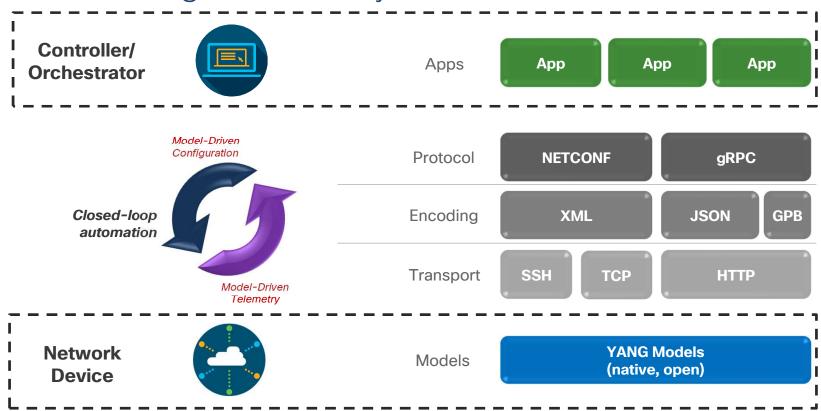
- Overview
- IOS XR Programmable Infrastructure
 - Manage
 - Monitor
 - Control
- Automation


Understanding Roadmap Slides

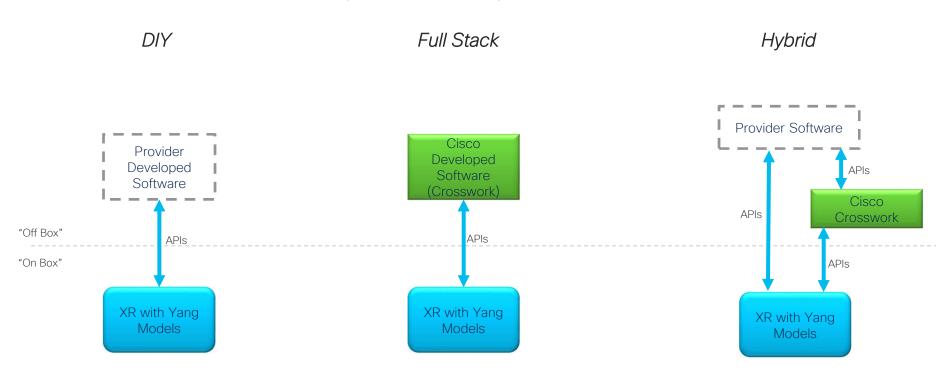
XR Programmability - As of 2021

IOS XR Programmability - Key Components

Route/Forwarding level Control functions


 RIB/FIB Level (SL-API) & Protocol Level (PCEP, BGP FS)

• Day 2 (Service)



Flexible Solutions = Cisco Internal (CrossWork, NSO) or External (HomeGrown or 3rd Party)

IOS XR Programmability - A Primer

Customer Deployment Styles

XR Programmability Infrastructure

Models - "Manage"

IOS XR Models - Styles

Native Models

OpenConfig Models

Comes integrated in IOS XR today (~1100 Native and ~100 OC models - XR 7.3.1)

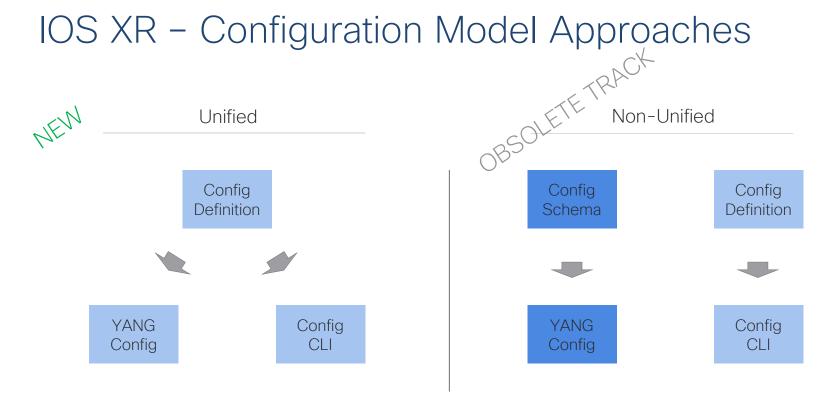
Note: There is No "one standard" - In Programmability it does NOT matter - APIs matter

IOS XR - Configuration Models

XR Native

Unified

Non-Unified


- XR or platform specific
- Full coverage of device functionality
- Single abstraction for YANG and CLI
- Full parity and deterministic coverage
- Same help/doc strings
- Expected to be current

- XR or platform specific
- Full coverage of device functionality
- Different abstractions for YANG and CLI
- Independent testing of parity and coverage
- Expected to be obsoleted

Open

OpenConfig

- Vendor neutral
- Partial coverage of device functionality
- Different abstraction from native model and CLI

BGP Neighbor Group Configuration -Schema Native Model (Deprecated) 1/2

```
router bgp 65001
neighbor-group IBGP
remote-as 65001
update-source Loopback0
address-family ipv4 unicast
!
!
```

```
<bgp xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ipv4-bgp-cfg">
  <instance>
    <instance-name>default</instance-name>
    <instance-as>
      <as>0</as>
      <four-byte-as>
        <as>65001</as>
        <bgp-running/>
        <default-vrf>
          <bgp-entity>
            <neighbor-groups>
              <neighbor-group>
                <neighbor-group-name>IBGP</neighbor-group-name>
                <create/>
                <remote-as>
                  <as-xx>0</as-xx>
                  <as-yy>65001</as-yy>
                </remote-as>
                <!-- continued -->
```

BGP Neighbor Group Configuration -Schema Native Model (Deprecated) 2/2

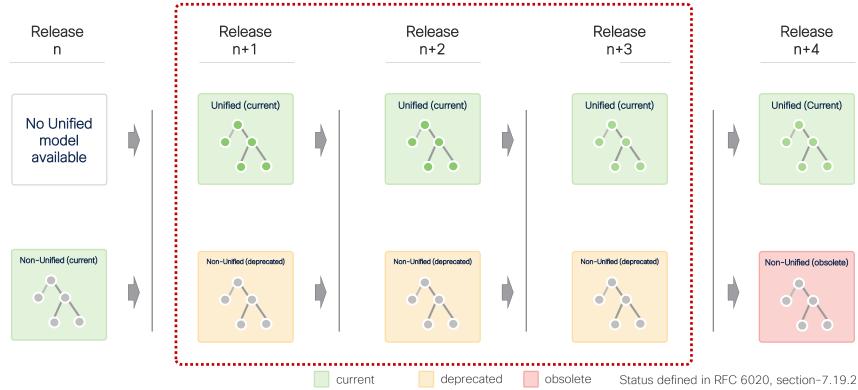
```
router bgp 65001
neighbor-group IBGP
remote-as 65001
update-source Loopback0
address-family ipv4 unicast
!
!
```

```
<!-- continued -->
                <update-source-interface>Loopback0</update-source-interface>
                <neighbor-group-afs>
                  <neighbor-group-af>
                    <af-name>ipv4-unicast</af-name>
                    <activate/>
                  </neighbor-group-af>
                </neighbor-group-afs>
              </neighbor-group>
            </neighbor-groups>
          </bgp-entity>
        </default-vrf>
      </four-byte-as>
    </instance-as>
  </instance>
</bgp>
```

BGP Neighbor Group Configuration - Unified Native Model

```
router bgp 65001
neighbor-group IBGP
remote-as 65001
update-source Loopback0
address-family ipv4 unicast
!
!
```

```
<router xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-um-router-bgp-cfg">
  <bgp>
    <as>
      <as-number>65001</as-number>
      <neighbor-groups>
        <neighbor-group>
          <neighbor-group-name>IBGP</neighbor-group-name>
          <remote-as>65001</remote-as>
          <update-source>Loopback0</update-source>
          <address-families>
            <address-family>
              <af-name>ipv4-unicast</af-name>
            </address-family>
          </address-families>
        </neighbor-group>
      </neighbor-groups>
    </as>
  </bgp>
</router>
```


Unified Configuration Models

		Deploy	Deploy	EC
7.0.1	7.1.1	7.2.1	7.3.1	7.4.1/7.5.1
Interfaces Bundles ARP LACP VRF Static routing RIB MPLS (LDP, LSD, L3VPN) Telemetry NETCONF gRPC SNMP	BGP ISIS OSPF (v2/v3) MPLS (TE) RSVP	QoS ACL (IPv4, IPv6, Ethernet, prefix list, object group) Multicast (AMT, IGMP, MLD, MSDP, PIM)	Around 40 new models under testing	Over 200 models under development

IETF RFC 6020 - Understanding Yang Model Status

- RFC6020 YANG A Data Modeling Language
 - Describes 3 states for Yang Models: Current, Obsolete, Deprecate
- Reproduced from RFC 6020, Section 7.19.2
 - "current" means that the definition is current and valid.
 - "deprecated" indicates an obsolete definition, but it permits new/ continued implementation in order to foster interoperability with older/existing implementations.
 - "obsolete" means the definition is obsolete and SHOULD NOT be implemented and/or can be removed from implementations.

Status Evolution For Non-Unified Models

IOS XR Yang Model Documentation

- Backwards incompatible changes are documented on GitHub
 - https://github.com/YangModels/yang/tree/master/v endor/cisco/xr/731/BIC
 - Definitions based on RFC6020, Section 10
- Format
 - HTMI
 - JSON (available)
- Full list of Models available in per XR release
 - https://github.com/YangModels/yang/blob/master/v endor/cisco/xr/731/Available-Content.md

Cisco-IOS-XR-invmgr-oper.yang XPaths Obsoleted XPaths Added XPaths Removed XPaths Modified XPaths Obsoleted N/A XPaths Deprecated N/A XPaths Added N/A XPaths Added N/A XPaths Added N/A XPaths Added N/A XPaths Removed (L444) /inventory/entities/entity[name]/attributes/m-done (L459) /inventory/entities/entity[name]/attributes/env-sensor-info-xml XPaths Modified N/A

Equivalency Tool (CLI to Yang)

 XR Feature that highlights Equivalent Yang Paths for Show & Config commands

CLI snapshot (Early view)

RP/0/RP0/CPU0:ios#model-describe operational line show platform location 0/RP0/CPU0

Wed Jan 20 02:38:55.419 UTC Operation : Get

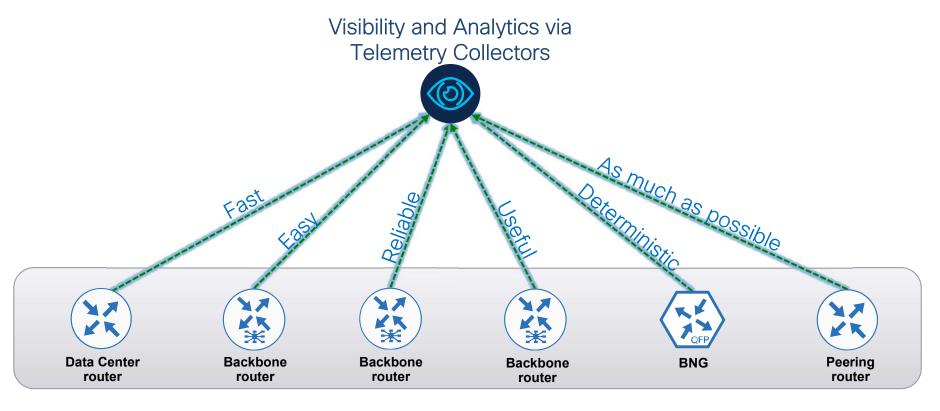
Yang Path : Cisco-IOS-XR-platform-oper:platform/racks/rack/slots/slot/instances/instance/state

XML Schema Hierarchy : Platform.RackTable.Rack.SlotTable.Slot.InstanceTable.InstanceState

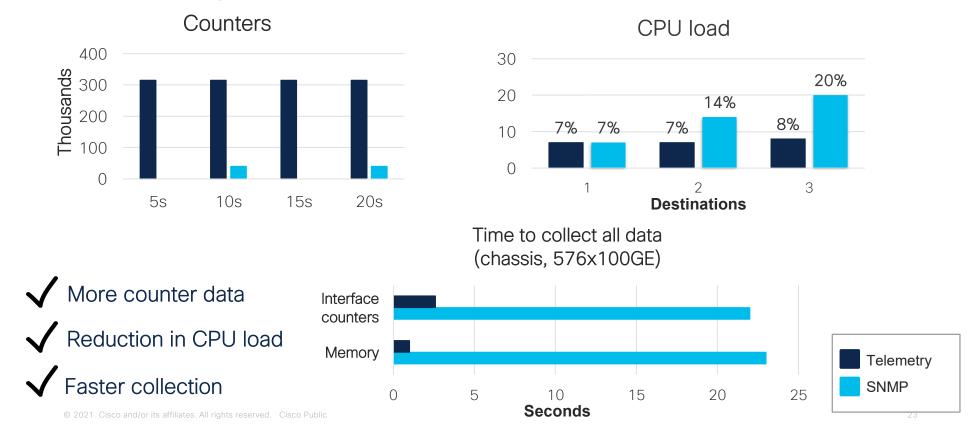
RP/0/RP0/CPU0:ios#model-describe operational line show inventory

Wed Jan 20 02:39:03.528 UTC

Operation : Datalist


Yang Path : Cisco-IOS-XR-invmgr-oper:inventory/racks/rack/attributes/inv-basic-bag

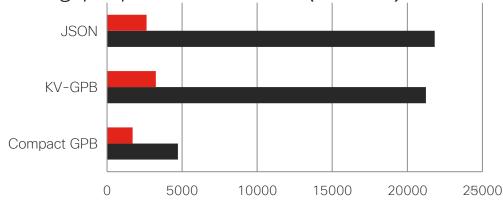
XML Schema Hierarchy : None


XR Programmability Infrastructure

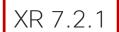
Telemetry - "Monitor"

Model Driven Telemetry - "Consumption Driven"

Telemetry vis-à-vis SNMP - "No Contest"

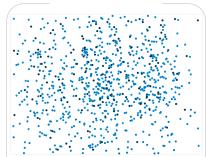


gRPC compression


- Support for compression has been added to XR gRPC implementation
- No configuration required for gNMI clients
 - Clients use CallOption "UseCompressor"
- New configuration under protocol grpc per destination (dialout)

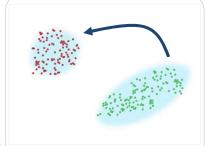
```
telemetry model-driven
destination-group notls
address-family ipv4 192.168.122.1 port 9902
encoding self-describing-gpb
protocol grpc no-tls gzip
!
!
!
```


9 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public


Leaf-level filtering

- Current subscriptions are internally mapped to the corresponding container (gather path)
- New feature to allow subscription at individual leaf level
 - Multiple leaves can be specified in a single subscription
 - Optimized to avoid duplicate internal collections

Al Driven Telemetry (ADT)


Collect

Holistic view:

Collect all counters all the time. Currently: MDT data, Netflow/CRFT (future)

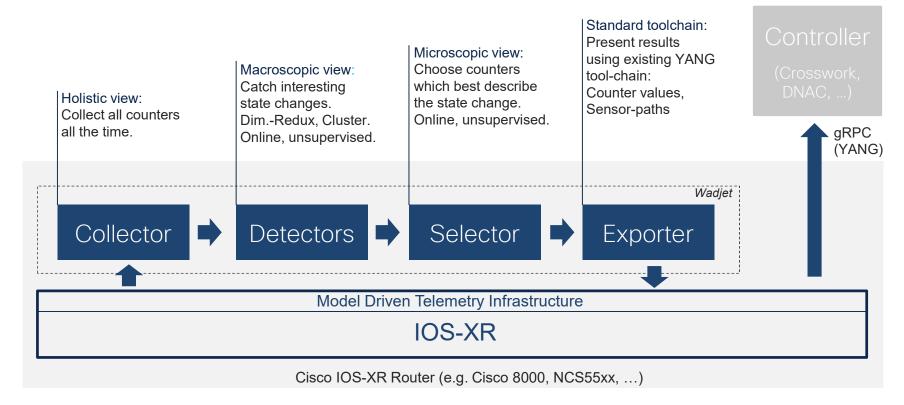
Detect

Macroscopic view:

Catch interesting state changes.
Dim.-Redux, Cluster.
Online, unsupervised.

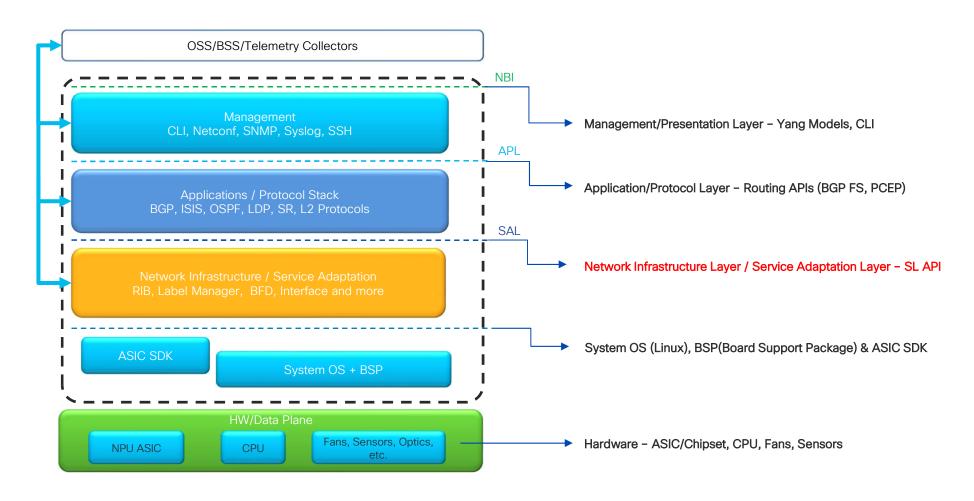
Select

Microscopic view: Choose counters


which best describe the state change. Online, unsupervised.

Export

Present results
using existing YANG
tool-chain:
Counter values,
Sensor-paths

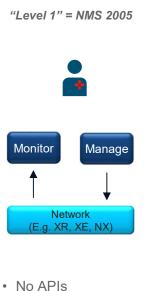

ADT in IOS-XR: Architecture

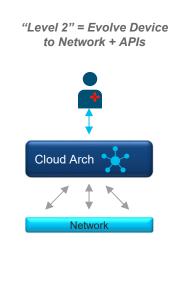
XR Programmability Infrastructure

Service Level API (SL-API) for "Control"

API Layers in IOS XR -> "Control" with SL-API

Examples of Using Service Level API (SL-API)

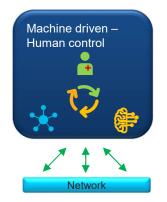

Use Case	Github Code Location		
Open/R running on IOS-XR as an IGP	https://github.com/akshshar/openr-xr		
Programmable BGP Route Download	https://github.com/Cisco-Service-Layer/openbmp-controller		
Egress Traffic Controller Telemetry based route selection	https://github.com/Maikor/nanog71-hackathon		
IPv6 neighbor based path failover (Telemetry+SL-API)	https://github.com/akshshar/xrtelemetry-slapi		
Interface Events based path failover (SL-API + YDK)	https://github.com/akshshar/ydk-slapi-remediation		


Automation Apps

Cisco Software - Automation Gradient

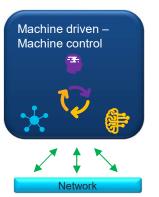
Analogy = SAE Level 1-5 for Self Driving cars

- Distinct Apps
- Fixed GUI



- Open APIs
- Service Models
- Flexible GUI

"Level 3" = Profile with ML/MR Algos Intelligence • Network


- · Use ML algos for Trends
- Use MR expert systems for Troubleshooting

"Level 4" = Closed Loop (With Intervention)

- Use ML + MR Algos with ability to control Network
- Human Control Intact

"Level 5" = Closed Loop (No Intervention)

- Final End State Decommission Elements when unable to handle
- Human intervention for 'out of sample' scenarios

Deploy

Cisco's Service Provider Automation Offerings

Day -1: Planning

All Planning Functions prior to Network

Product(s) Available:

• Crosswork Qualification Engine (CQE)

Day 0: Bring Up

Bring Up Functions Including ZTP & Software Image Management (SWIM)

Product(s) Available:

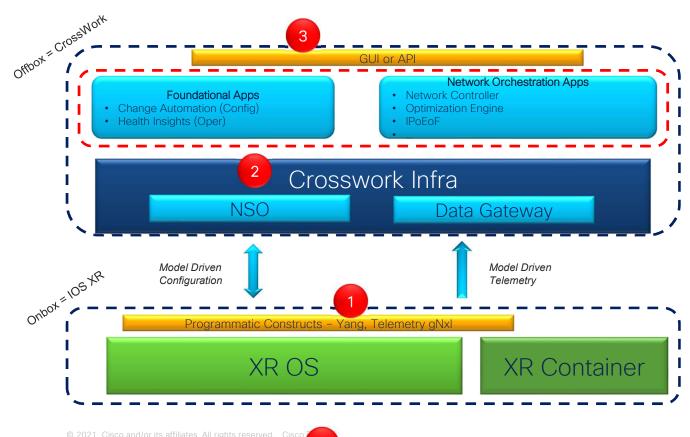
- XR ZTP
- Crosswork ZTP

Day 1: Operate

Network Services & Transport Operations

Product(s) Available:

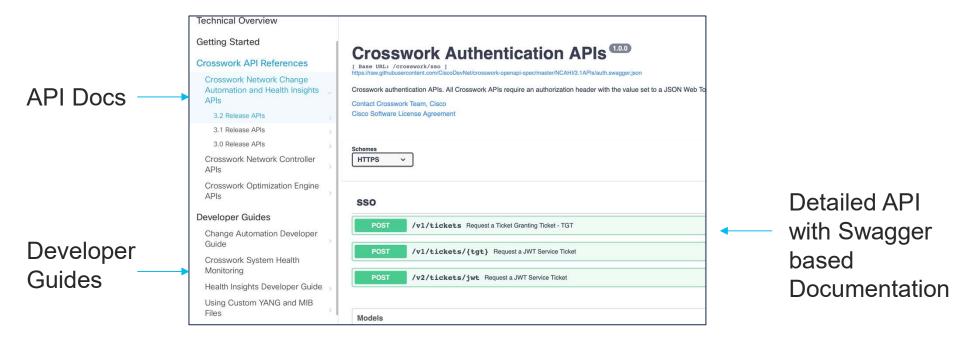
- XR Yang Models & Telemetry
- Change Automation
- Health Insights
- Network Controller


Day 2: Assurance

Protocol level Troubleshooting

Product(s) Available:

• Day 1 Offerings


Cisco SP - Full Stack Software Offerings

- Rich Application Ecosystem
- Consume (or extend) via GUI or API
- App Ecosystem leverage APIs internally
- Built for Cloud scale with Microservices architecture
- 'Onbox' Software within Router – the Base Layer
- Fully Open Yang Models – Extend for Provider Software
- Container provides preprocessing capabilities for Crosswork

Crosswork APIs

https://developer.cisco.com/crosswork/

Takeaways

Takeaways

- Operational Simplification in XR delivered via Data Models
- XR Programmability Infrastructure Hardening
- Wide range of deployment styles envisioned DIY, Full Stack & Hybrid

·I|I·I|I· CISCO