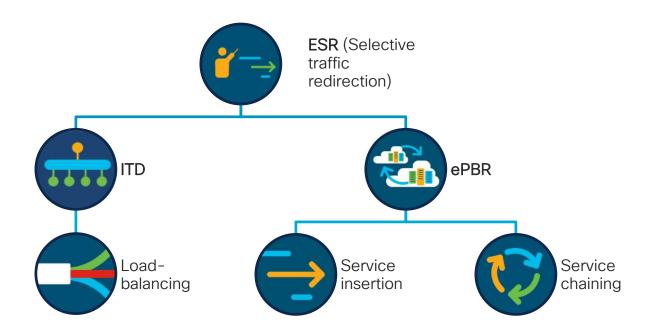


Agenda

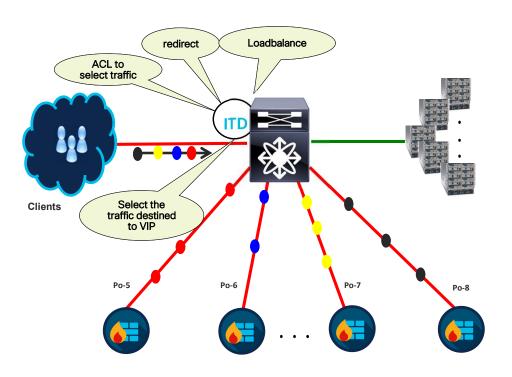
- Introduction to ESR
- Intelligent Traffic Director(ITD) Overview
- ITD Use cases
- Enhanced Policy-based Redirect(ePBR)
 Overview
- ePBR Use cases
- Hardware and Licensing Requirements
- Summary



Current Industry Trends

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

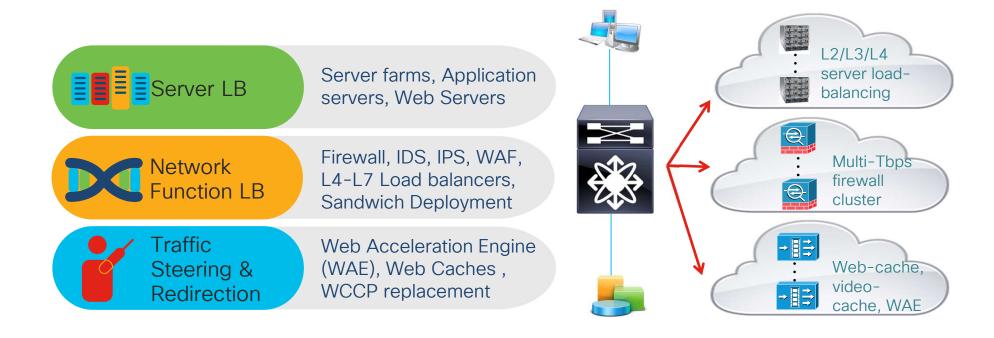
What is Elastic Services Redirection (ESR)?



ITD?

- Hardware based Multi-terabit L2/L3/L4 network load-balancing solution at wirespeed
- Addresses growing demand for High-Capacity Traffic Distribution
- ITD eliminates the need to provision and manage another external expensive load-balancer (L2/L3/L4)

ITD: Intelligent Traffic Director


- Maintains IP stickiness & Flow symmetry
- IPv4,IPV6 and VRF Aware
- Health Monitoring
- · Resilient and supports failure handling
- High availability, standby support
- Flexible deployment options
- Appliance agnostic

ITD Capabilities

- ✓ Supports Selective traffic load-balancing
 - ACL based
 - VIP based SLB (VIP/Protocol/Port)
- ✓ Supports NAT & PAT (non-DSR mode)
- ✓ Supports load-balancing using Src/Dst ip and L4 port
- ✓ Weighted load-balancing
- ✓ Flexible Probe options (ICMP/TCP/UDP/HTTP/DNS/Custom)
- ✓ Non-disruptively add and delete service nodes + ACL selection
- ✓ ITD for traffic distributions across inline/bump in the wire deployments
- ✓ Sub second Convergence

ITD Deployments

ITD Solution details

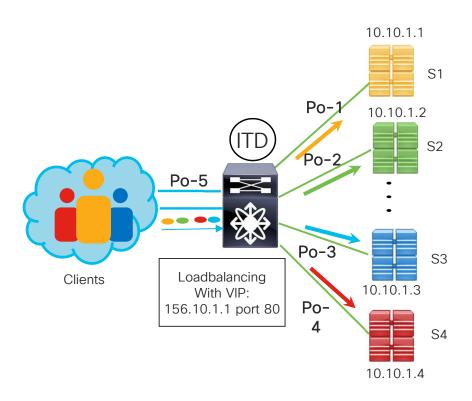
Device group Definition

- Service Nodes / Service Appliances IP
- Probes
- Weights
- Standby (backup nodes)

Service Definition

- Attach device-group
- > Ingress-interface
- Virtual IP Address
- Traffic Filtering / selection ACL
- Load-balancing options
- > Failover options

Service Bring up

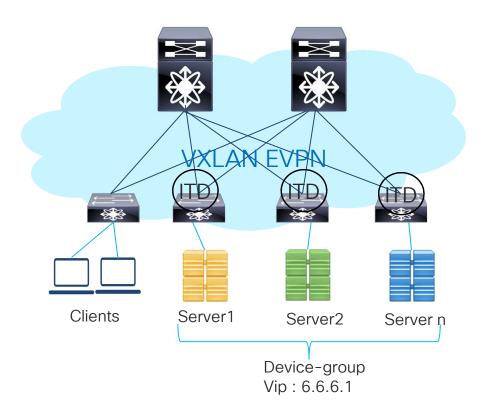

Bring up the ITD service with 'no shut' for the policy to be applied on the interface

ITD config example

feature sla sender feature pbr Device-group feature itd Probe Defines server IP itd device-group server farm Node failure probe icmp detection node ip 10.1.1.2 node ip 20.1.1.2 node ip 30.1.1.2 VIP node ip 40.1.1.2 Traffic selection ITD service Defines instances itd service device-group server farm Ingress interface virtual ip 6.6.6.1 255.255.255.255 L3 interface receiving failaction node per-bucket Load-balance ingress interface Eth1/1 traffic -load-balance method src ip buckets 32 least-bit Src/Dst/L4 port no shut

Server Load Balancing(SLB)

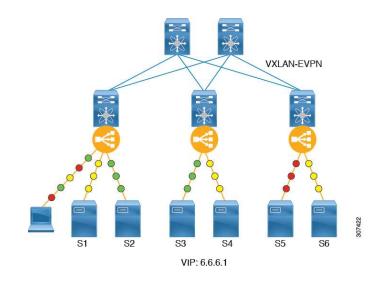
- Packets from client redirected and loadbalanced across servers using ITD
- All servers configured with a VIP as loopback address
- Server returns the packet to client using Direct Server Return(DSR)
- One-Arm Mode deployment


Server Load Balancing(SLB)

Configuration Example

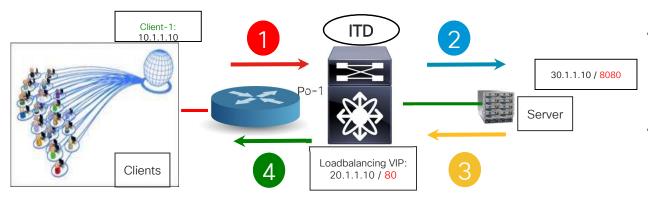

```
feature itd
feature pbr
feature sla sender
itd device-group server farm
probe tcp port 80
 node ip 10.10.1.1
  node ip 10.10.1.2
 node ip 10.10.1.3
  node ip 10.10.1.4
itd Service-1-IPv4
  device-group server farm
 virtual ip 156.10.1.1 255.255.255.255 tcp 80
  ingress interface po5
  ingress interface po6
  failaction node per-bucket
 load-balance method src ip buckets 16
  no shut
```

Fabric as a Load-balancer



- ITD over VXLAN enables server load-balancing based on VIP in a VXLAN EVPN fabric
- All servers are configured with a VIP as loopback address
- Server returns the packet to client using Direct Server Return(DSR)

Fabric as a Load-balancer


Configuration Example

```
itd device-group DG1
node ip 10.200.1.2
node ip 10.200.2.2
mode hot-standby
node ip 10.200.3.2
node ip 10.200.4.2
node ip 10.200.5.2
mode hot-standby
node ip 10.200.6.2
itd SER1
vrf Org1:vrf1
source-interface loopback9
device-group DG1
virtual ip 6.6.6.1 255.255.255.255
ingress interface Vlan100
load-balance method src ip
no shut
```

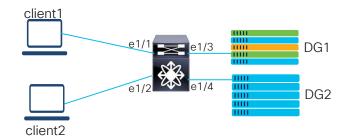

L3vni interface

SLB with Destination NAT & PAT

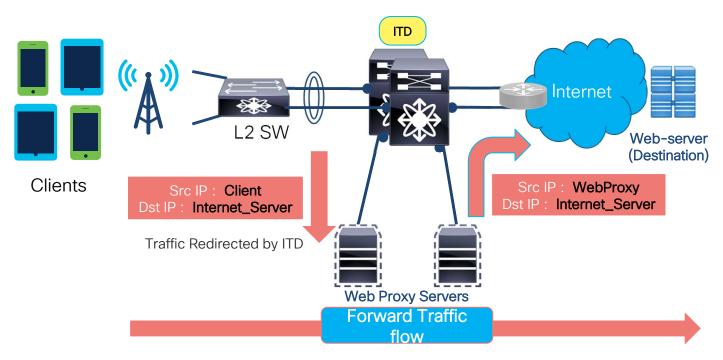
Step	dst-mac	src-mac	src-ip	dst-ip
1	N9K MAC	Router MAC	10.1.1.10	20.1.1.10:80
2	Server MAC	N9K MAC	10.1.1.10	30.1.1.10:8080
3	N9K MAC	Server MAC	30.1.1.10:8080	10.1.1.10
4	Router MAC	N9K MAC	20.1.1.10:80	10.1.1.10

- ITD NAT eliminates the need to configure a loopback on server for DSR
- In forward flow from Client to server, the N9k translates the DIP and port from VIP to real IP/Port of the server
- In reverse flow from Server back to client, N9k translates the SIP from server IP/Port to VIP/Port

SLB with Destination NAT & PAT

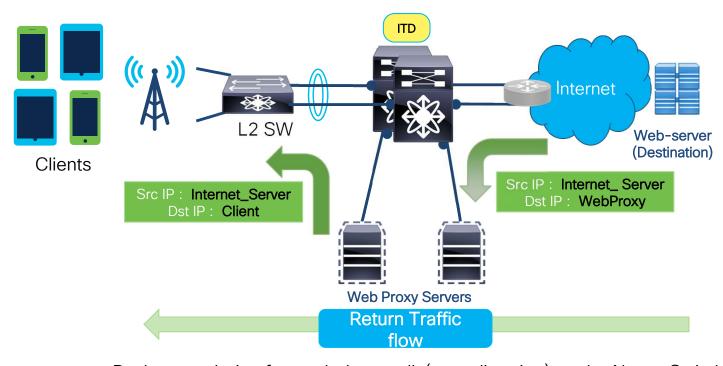

Configuration Example

port 2000


ITD NAT requires NAT tcam and feature "NAT" to be enabled

```
hardware access-list tcam region nat 2048
feature nat
feature itd
feature sla sender
interface eth1/1-2
ip nat outside
interface e1/3-4
ip nat inside
itd device-group DG1
probe icmp frequency 2 timeout 1
node ip 8.8.1.2
node ip 9.9.1.2
port 1000
itd device-group DG2
probe icmp
node ip 10.10.1.2
port 1000
node ip 11.11.1.3
```

```
itd SER1
virtual ip 6.6.1.1 255.255.255.255 tcp 80 advertise enable device-
group DG1
virtual ip 6.6.1.2 255.255.255.255 tcp 90 advertise enable device-
group DG2
ingress interface e1/1
Ingress interface e1/2
nat destination
failaction node per-bucket
load-balance method src ip buckets 32
no shut
```

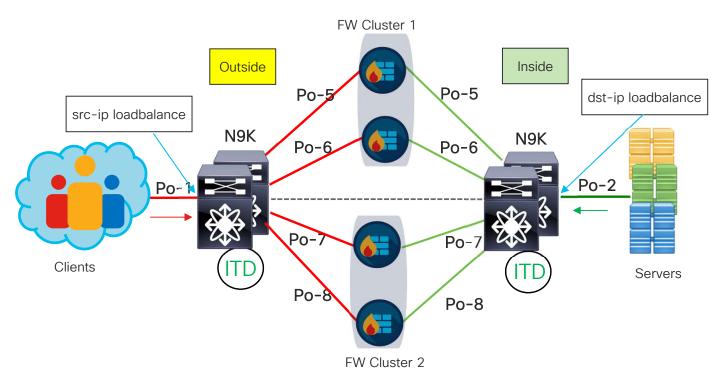


Web-Proxy Deployment

ITD redirects using Include-ACL and load-balances the packets across the Web-Proxy servers

Web-Proxy Deployment (cont.)

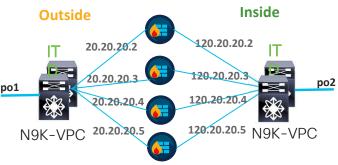
Packets are being forwarded normally(no redirection) on the Nexus Switches.


Web-Proxy Deployment

Configuration Example


```
itd device-group Web Proxy Servers
feature itd
                                                         probe icmp
feature pbr
                                                         node ip 10.1.50.1
feature sla sender
                                                         node ip 10.1.50.2
ip access-list itd exclude ACL
                                                       itd Web proxy SERVICE
  ! Exclude private IP address
                                                         device-group Web Proxy Servers
 10 permit ip any 10.0.0.0/8
                                                         exclude access-list itd exclude ACL
  20 permit ip any 192.168.0.0/16
                                                         access-list internet-acl
  30 permit ip any 172.16.0.0/12
                                                         ingress interface Vlan 10
                                                         failaction bucket distribute
ip access-list internet-acl
                                                         load-balance method src ip
  10 permit ip any any tcp 80
                                                         no shutdown
  20 permit ip any any tcp 443
```

Sandwich Mode Deployment

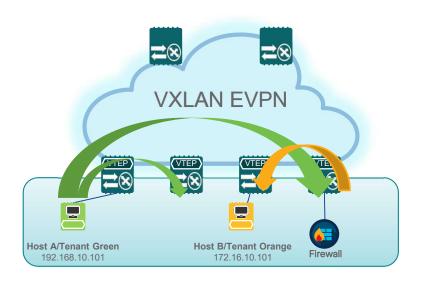

- The sandwich deployment mode provides Symmetric handling of traffic.
- Forward and reverse traffic between the client and the server flows through the same appliance.
- Appliance clustering capability

Sandwich Deployment

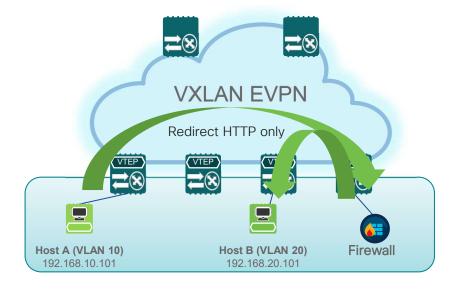
Configuration Example

```
itd device-group FW-INSPECT
probe icmp
node ip 20.20.20.2
cluster 1
node ip 20.20.20.3
cluster 1
node ip 20.20.20.4
cluster 2
node ip 20.20.20.5
cluster 2
```

itd WebTraffic
Device-group FW-INSPECT
ingress interface pol
failaction bucket distribute
load-balance method src ip buckets
64
no shut

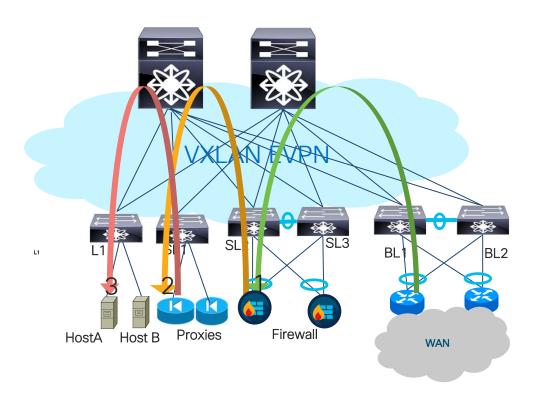


itd device-group FW-INSPECT
probe icmp
node ip 20.20.20.2
cluster 1
node ip 20.20.20.3
cluster 1
node ip 20.20.20.4
cluster 2
node ip 20.20.20.5
cluster 2


itd WebTraffic
Device-group FW-INSPECT
ingress interface po2
failaction bucket distribute
load-balance method dst ip buckets
64
no shut

How is Service Chaining Done today?

Routing rules reflect path via service devices


Selective Traffic Redirect using Policy Based Routing

What are the challenges with existing options?

- Service nodes becoming bottlenecks
- Static PBR policies complex to maintain
- Service redirection across multiple service nodes is complex to configure
- Options to load-balance and redirect missing
- Limited ability to monitor device health and configuring fail action based on device availability is missing
- Need to account for forward and return traffic to maintain symmetry

Enhanced Policy-based Redirect(ePBR)

- Hardware based Multi-terabit servicechaining solution
- EPBR provides the ability to
 - ✓ Onboard services
- √ Create service-chains
- √ Load-share with selective redirection
- Health monitoring and node failover
- Flexible deployments options
 - √ Fabric based with VXLAN EVPN
- √ Traditional centralized gateway deployment

ePBR Capabilities

Simplified service chain creation

- Simplified device onboarding
- Granular multi-level service policy creation

Health monitoring & flexible failover

- Probes -ICMP/TCP/UDP/HTTP/ DNS/Custom
- Failover Forward / Bypass / Drop

Optimized utilization of service node

- Selective traffic redirection
- L3/L4 redirect, exclude and drop options

Non-disruptive in-service config updates

 Add/delete/modify service, policy and match ACL selection

Ability to scale

 Through symmetric load-balancing along with chaining

Line Rate traffic forwarding

- No impact to throughput & performance
- · No increased latency

ePBR Solution details

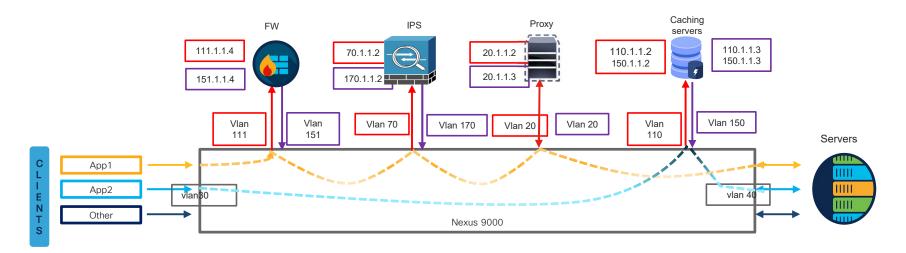
Onboard Service Appliance

- Service IP address
- Forward and reverse attached interface (single/dual arm)
- Probes
- VRF membership
- Additional service end-points for creating appliance cluster

Define traffic redirect Policy

- Traffic Filtering or selection ACL
- Service-chain creation
- Load-balancing options(src/dst and buckets)
- Failover options (forward/bypass/drop)

Apply the ePBR Policy on relevant interfaces


- Apply policy on ingress interface where chaining needs to start
- VXLAN Apply on L3 VNI interfaces on service leaf
- Apply policy with "reverse" keyword to maintain flow symmetry

ePBR config example

```
epbr service FIREWALL CLUSTER A
                                                                   Forward arm
  probe icmp source-interface loopback10
  vrf TENANT A
                                                                     Reverse arm
  service-endpoint ip 172.16.1.200 interface VLAN100
           reverse ip 172.16.2.200 interface VLAN101
                                                                     Active /Active firewall pair
  service-endpoint ip 172.16.1.201 interface VLAN100
           reverse ip 172.16.2.201 interface VLAN101
                                          ACL matches web traffic
epbr policy Tenant A-Redirect
  match ip address WEB
  load-balance method src-ip
   10 set service FIREWALL fail-action drop
   20 set service TCP Optimizer fail-action bypass
  match ip address APP
  load-balance method src-ip
   10 set service FIREWALL fail-action drop
interface vlan 2010
                                                                 EPBR auto generates
 !L3 VNI SVI
                                                               reverse policies for return
 epbr ip policy Tenant A-Redirect
                                                                         traffic
 epbr ip policy Tenant A-Redirect reverse
```


Service chaining in Traditional deployments

- App1 traffic : firewall → IPS → Proxy
- App2 traffic : Load-balanced directly among the caching servers

Service chaining in Traditional deployments

Configuration Example

Step 1: Onboard the appliances

```
epbr service firewall
service-end-point ip 111.1.1.4 interface Vlan111
probe icmp source-interface loopback0
reverse ip 151.1.1.4 interface Vlan151
probe icmp source-interface loopback1

epbr service ips
service-end-point ip 70.1.1.2 interface Vlan70
probe udp 45000
reverse ip 170.1.1.2 interface Vlan170
probe udp 45001

epbr service proxy
service-interface Vlan20
probe http get index.html
service-end-point ip 20.1.1.2
reverse ip 20.1.1.3
```

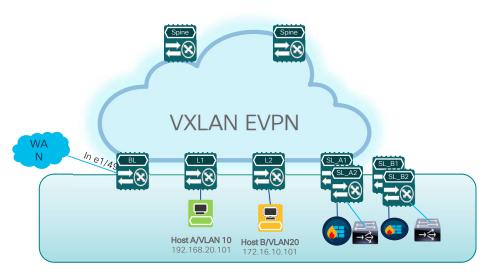
```
epbr service caching_servers
! traffic will be load-balanced between the
servers
! server1
  service-end-point ip 110.1.1.2 interface Vlan110
     probe icmp source-interface loopback0
    reverse ip 150.1.1.2 interface Vlan150
        probe icmp source-interface loopback1
! server2
  service-end-point ip 110.1.1.3 interface Vlan110
     probe icmp source-interface loopback0
  reverse ip 150.1.1.3 interface Vlan150
     probe icmp source-interface loopback1
```

Service chaining in Traditional deployments

Configuration Example(cont.)

Step 2: Create traffic selection rules

```
ip access-list app1
       10 permit tcp 172.16.10.0/24 eq 7800 any
       20 permit tcp 192.168.20.0/24 eq 7800 any
ip access-list app2
       10 permit tcp 172.16.10.0/24 any eq www
        20 permit tcp 192.168.20.0/24 any eq www
```

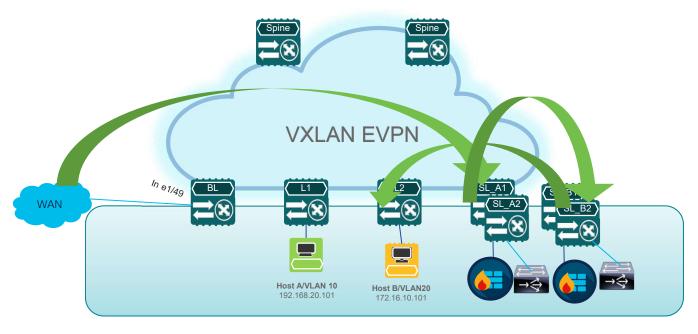

Step 3: Define ePBR traffic redirect policy

```
epbr policy redirect and loadbalance
  statistics
 match ip address app1
   ! Traffic matching appl takes FW > IPS > Proxy chain
   10 set service firewall fail-action drop
   20 set service ips fail-action bypass
    30 set service proxy fail-action forward
 match ip address app2
    ! Traffic matching app2 is load-balanced across
caching servers
   load-balance buckets 8 method src-ip
   10 set service caching servers
```

Step 4: Apply the ePBR Policy on relevant interfaces

```
interface Vlan30
  !forward policy applied to ingress interface facing
  no shut.down
  ip address 30.1.1.1/24
  ipv6 address 2030::1/24
  epbr ip policy redirect and loadbalance
interface Vlan40
! Reverse policy applied to egress interface facing
server farm for reverse flow
 no shutdown
 ip address 40.1.1.1/24
  ipv6 address 2040::1/24
  epbr ip policy redirect and loadbalance reverse
```

Service chaining in VXLAN Fabric



Service Nodes in Active/Standby Mode

Requirements

- Firewall and Load-balancer provisioned as High availability Pair in Active/Standby fashion
- Identify failure of active services and switchover traffic to standby on event of failure
- We need selective segregation on the traffic from WAN based on different match criteria
- All other traffic goes through via routing table rules.
- · Fail-action rules
 - · If FW Cluster is down, drop.
- Symmetry must be maintained for return traffic.

Selective traffic redirection across Active/Standby Service Appliances

FW_inside in VLAN 101 FW_outside in VLAN 102 LB in VLAN 200 FW and LB in same VRF as Hosts

Service Nodes in Active/Standby Mode

Selective traffic redirection across Active/Standby Service Appliances

Configuration Example on service leaf

Step 1: Onboard appliances

```
epbr service firewall

vrf tenant_a

service-end-point ip 10.1.1.2 interface Vlan10

probe icmp frequency 4 timeout 2 source-
interface loopback9

reverse ip 50.1.1.2 interface Vlan50

probe icmp frequency 4 timeout 2 source-
interface loopback10

epbr service load-balancer

service-interface Vlan20

vrf tenant_a

probe http get index.html source-interface
loopback9

service-end-point ip 20.1.1.2

reverse ip 20.1.1.2
```

Step 2: Create traffic selection rules

Selective traffic redirection across Active/Standby Service Appliances

Configuration Example(cont.)

Step 3: Define ePBR traffic redirect policy

```
epbr policy service_chain
statistics
match ip address custom_app
load-balance buckets 4 method src-ip
10 set service firewall fail-action drop
20 set service load-balancer fail-action bypass
match ip address web
load-balance buckets 2 method src-ip
10 set service firewall fail-action drop
```

Step 4: Apply the ePBR Policy on L3vni interfaces for forward and return traffic

```
interface Vlan100
! L3 VNI SVI
  vrf member tenant_a
    ip forward
  ipv6 forward
  epbr ip policy service_chain
  epbr ip policy service chain reverse
```

Verification using show command

```
sh epbr policy service chain
Policy-map : service chain
 Match clause:
    ip address (access-lists): custom app
 Service chain:
    service firewall, sequence 10, fail-action Drop
      IP 10.1.1.2 track 1 [UP]
    service load-balancer, sequence 20, fail-action Bypass
      IP 20.1.1.2 track 2 [UP]
 Match clause:
    ip address (access-lists): web
 Service chain:
    service firewall, sequence 10, fail-action Drop
      IP 10.1.1.2 track 1 [UP]
 Policy Interfaces:
   Eth1/49
```

Note: Use reverse keyword in show command to view reverse service chain

ePBR for 5G deployments!!

Service chaining & load-balancing across Telco DC

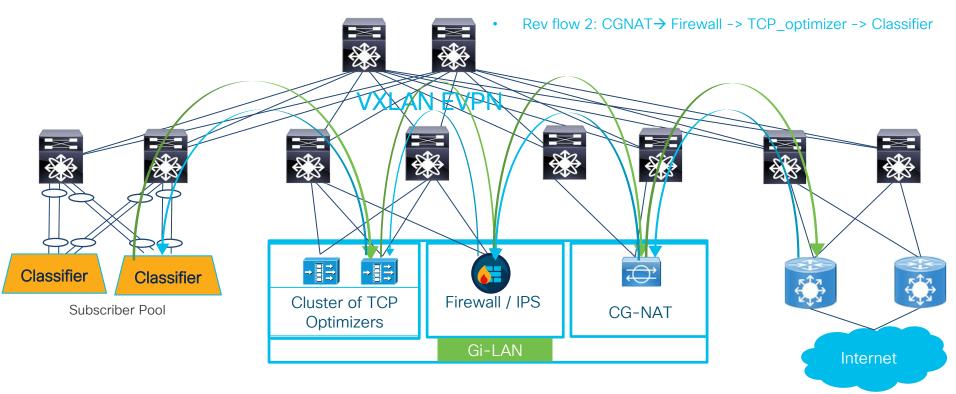
Rev flow 1: Classifier -> TCP_optimizer -> Classifier

Rev flow 1: CGNAT-> Firewall -> TCP_optimizer -> Classifier

Classifier

Classifier

Cluster of TCP
Optimizers


Cluster of TCP
Optimizers

Classifier

Clas

Symmetric PBR across different flows

Fwd flow2 : Classifier -> TCP_optimizer -> Firewall -> CG-NAT

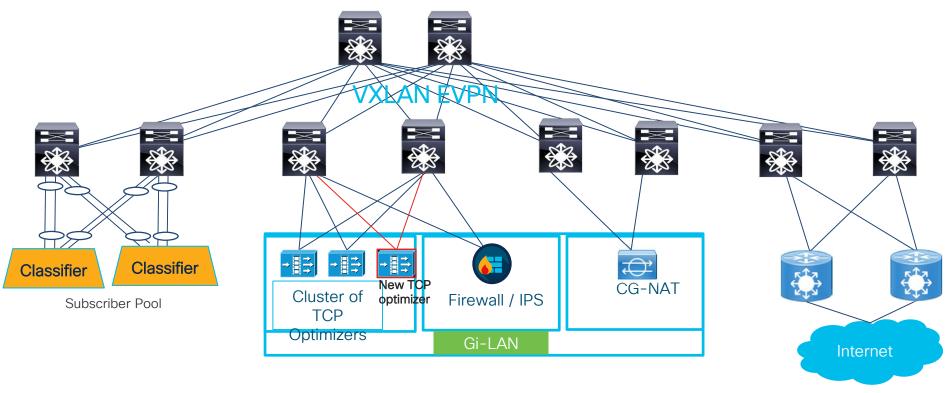
Bypass failed service node

Rev flow 1: Classifier -> TCP_optimizer -> Classifier

Rev flow 1: CGNAT-> Firewall -> TCP_optimizer -> Classifier

Classifier

Classifier


Classifier

Cluster of NCP
Optimizers

Gi-LAN

Internet

Non-disruptive simplified expansion

ePBR for 5G deployments

Configuration Example

Step 1: Onboard the appliances

```
epbr service firewall
service-end-point ip 111.1.1.4 interface Vlan111
probe icmp source-interface loopback0
reverse ip 151.1.1.4 interface Vlan151
probe icmp source-interface loopback1
```

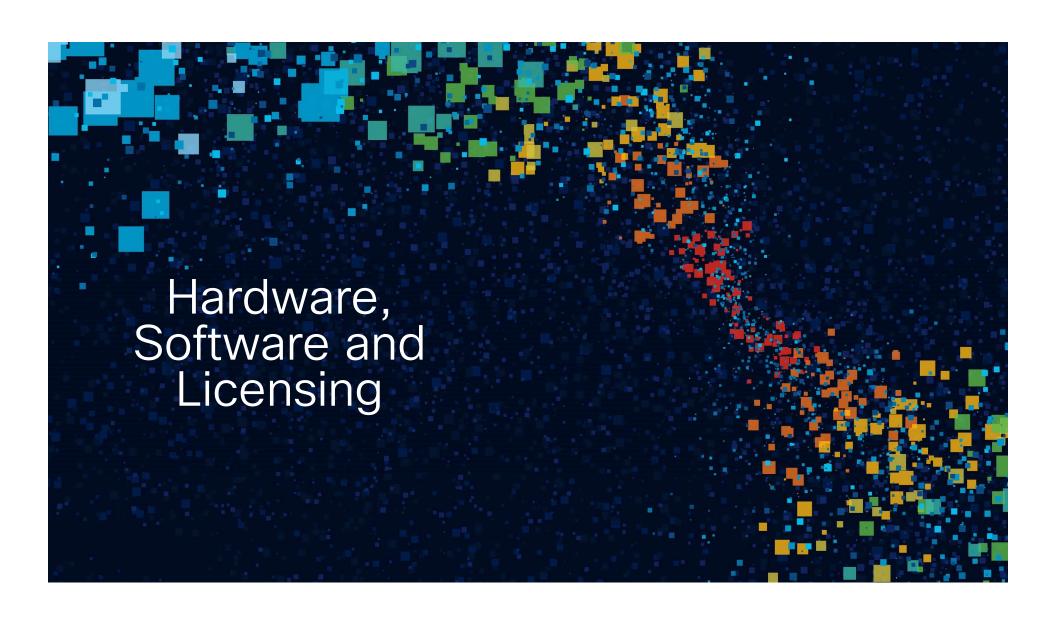
epbr service cg_nat
 service-interface Vlan20
 probe http get index.html
 service-end-point ip 20.1.1.2
 reverse ip 20.1.1.3

```
epbr service tcp_optimizers
! traffic will be load-balanced between the optimizers
! optimizer1
  service-end-point ip 110.1.1.2 interface Vlan110
    probe icmp source-interface loopback0
    reverse ip 150.1.1.2 interface Vlan150
        probe icmp source-interface loopback1
! optimizer2
  service-end-point ip 110.1.1.3 interface Vlan110
    probe icmp source-interface loopback0
  reverse ip 150.1.1.3 interface Vlan150
    probe icmp source-interface loopback1
```

ePBR for 5G deployments

Configuration Example(cont.)

Step 2: Create traffic selection rules


```
ip access-list app1
       10 permit tcp 172.16.10.0/24 eg 7800 any
        20 permit tcp 192.168.20.0/24 eq 7800 any
```

Step 3: Define ePBR traffic redirect policy

```
epbr policy servicechain and loadbalance
  statistics
 match ip address app1
   ! TCP optimizer→firewall→cg nat chain
   10 set service tcp optimizers fail-action bypass
   20 set service firewall fail-action drop
   30 set service cg nat fail-action drop
```

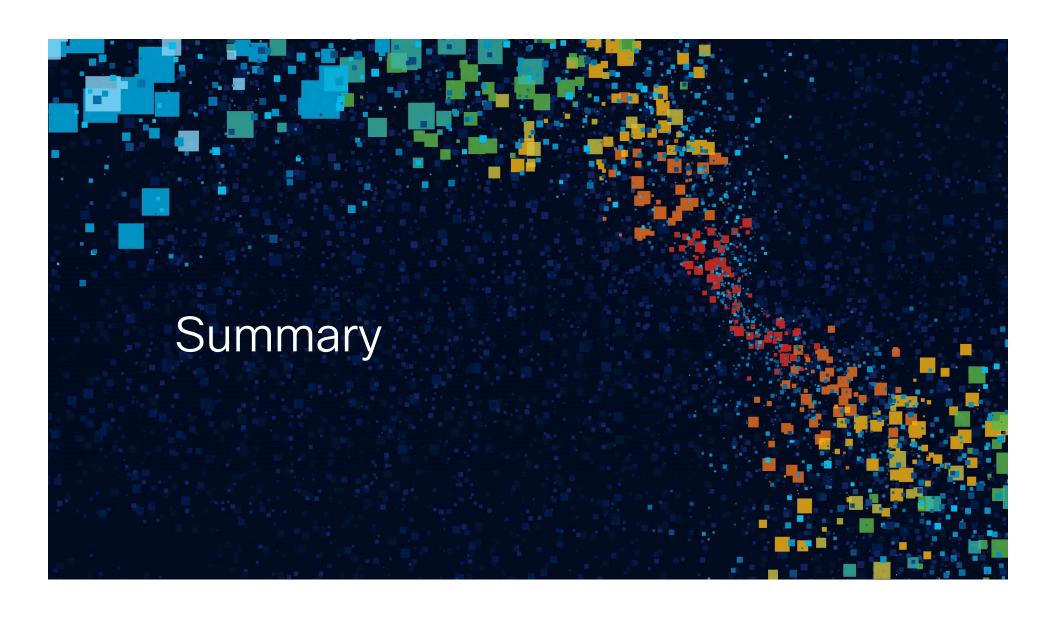
Step 4: Apply the ePBR Policy on relevant interfaces

```
interface Vlan30
  !forward policy applied to ingress interface facing
classifier
  no shutdown
  ip address 30.1.1.1/24
  ipv6 address 2030::1/24
  epbr ip policy servicechain and loadbalance
interface Vlan40
! Reverse policy applied to egress interface facing WAN
for reverse flow
  no shutdown
  ip address 40.1.1.1/24
  ipv6 address 2040::1/24
   epbr ip policy servicechain and loadbalance reverse
interface vlan100
! L3vni interface on service leafs
ip forward
no ip redirect
epbr ip policy servicechain and loadbalance
epbr ip policy servicechain and loadbalance reverse
```


Nexus 9500 Series with EX, FX and GX line cards

Nexus 9300 EX/FX/FX2/FX3/GX Series

Nexus 3600 & 9500 R Series*



From Cisco's Data Center Portfolio

*ePBR support in upcoming release

ESR Software and Licensing requirements

ESR Benefits

Scalability

Multi-Terabits Line Rate solutions

No CPU overhead

Scales to large number of Service Nodes

High Availability

Health Monitoring of servers/appliances

Automatic Failure Handling

N + M redundancy

OPEX Savings

Simplified provisioning & Ease of deployment

Significant reduction of Configuration

Complexity

Programmable (REST, Netconf)

CAPEX Savings

Moving away from specialized, dedicated, expensive HW

Additional Cost savings from Wiring, Power,
Rackspace